Velo-Gala I, Barceló-Oliver M, Gil DM, González-Pérez JM, Castiñeiras A, Domínguez-Martín A. Deciphering the H-Bonding Preference on Nucleoside Molecular Recognition through Model Copper(II) Compounds.
Pharmaceuticals (Basel) 2021;
14:ph14030244. [PMID:
33803177 PMCID:
PMC7998196 DOI:
10.3390/ph14030244]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
The synthetic nucleoside acyclovir is considered an outstanding model of the natural nucleoside guanosine. With the purpose of deepening on the influence and nature of non-covalent interactions regarding molecular recognition patterns, three novel Cu(II) complexes, involving acyclovir (acv) and the ligand receptor N-(2-hydroxyethyl)ethylenediamine (hen), have been synthesized and thoroughly characterized. The three novel compounds introduce none, one or two acyclovir molecules, respectively. Molecular recognition has been evaluated using single crystal X-ray diffraction. Furthermore, theoretical calculations and other physical methods such as thermogravimetric analysis, infrared and UV-Vis spectroscopy, electron paramagnetic resonance and magnetic measurements have been used. Theoretical calculations are in line with experimental results, supporting the relevance of the [metal-N7(acv) + H-bond] molecular recognition pattern. It was also shown that (hen)O-H group is used as preferred H-donor when it is found within the basal coordination plane, since the higher polarity of the terminal (hen)O-H versus the N-H group favours its implication. Otherwise, when (hen)O-H occupies the distal coordination site, (hen)N-H groups can take over.
Collapse