1
|
Rufino-Felipe E, Valdes H, Morales-Morales D. C‐S cross‐coupling reactions catalyzed by well‐defined copper and nickel complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ernesto Rufino-Felipe
- Instituto de Quimica UNAM: Universidad Nacional Autonoma de Mexico Instituto de Quimica Inorganic Chemistry MEXICO
| | - Hugo Valdes
- University of Girona - Montilivi Campus: Universitat de Girona - Campus de Montilivi Chemistry SPAIN
| | - David Morales-Morales
- Instituto de Quimica. Universidad Nacional Autonoma de Mexico Quimica inorganica Ciudad UniversitariaCircuito Exterior S/NCoyoacan 04510 Mexico City MEXICO
| |
Collapse
|
2
|
Methylaluminum complexes based on tridentate 2,6-bis(mercaptoalkyl)pyridine SNS-ligands. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Cao D, Pan P, Li CJ, Zeng H. Photo-induced transition-metal and photosensitizer free cross–coupling of aryl halides with disulfides. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
4
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
5
|
Rogovoy MI, Davydova MP, Bagryanskaya IY, Artem’ev AV. Efficient one-pot synthesis of diphenyl(pyrazin-2-yl)phosphine and its AgI, AuI and PtII complexes. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Isai Ortega-Gaxiola J, Valdés H, Rufino-Felipe E, Toscano RA, Morales-Morales D. Synthesis of Pd(II) complexes with P-N-OH ligands derived from 2-(diphenylphosphine)-benzaldehyde and various aminoalcohols and their catalytic evaluation on Suzuki-Miyaura couplings in aqueous media. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
C S cross-coupling catalyzed by a series of easily accessible, well defined Ni(II) complexes of the type [(NHC)Ni(Cp)(Br)]. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Oswal P, Arora A, Singh S, Nautiyal D, Kumar S, Rao GK, Kumar A. Organochalcogen ligands in catalysis of oxidation of alcohols and transfer hydrogenation. Dalton Trans 2020; 49:12503-12529. [PMID: 32804180 DOI: 10.1039/d0dt01201g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organochalcogen compounds have been used as the building blocks for the development of a variety of catalysts that have been studied comprehensively during the last two decades for several chemical transformations. Transfer hydrogenation (reduction of carbonyl compounds to alcohols) and oxidation of alcohols (conversion of alcohols to their respective ketones and aldehydes) are also among such chemical transformations. Some compilations are available in the literature on the development of catalysts, based on organochalcogen ligands, and their applications in Heck reaction, Suzuki reaction, and other related aspects. Some review articles have also been published on different aspects of oxidation of alcohols and transfer hydrogenation. However, no such article is available in the literature on the syntheses and use of organochalcogen ligated catalysts for these two reactions. In this perspective, a survey of developments pertaining to the synthetic aspects of such organochalcogen (S/Se/Te) based catalysts for the two reactions has been made. In addition to covering the syntheses of chalcogen ligands, their metal complexes and nanoparticles (NPs), emphasis has also been placed on the efficient conversion of different substrates during catalytic reactions, diversity in catalytic potential and mechanistic aspects of catalysis. It also includes the analysis of comparison (in terms of efficiency) between this unique class of catalysts and efficient catalysts without a chalcogen donor. The future scope of this area has also been highlighted.
Collapse
Affiliation(s)
- Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Siddhant Singh
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Divyanshu Nautiyal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Sushil Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Gyandshwar Kumar Rao
- Department of Chemistry Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| |
Collapse
|
9
|
Layek S, Agrahari B, Kumar A, Dege N, Pathak DD. Synthesis and X-ray crystal structures of three new nickel(II) complexes of benzoylhydrazones: Catalytic applications in the synthesis of 2-arylbenzoxazoles. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Tavares Junior JMDC, da Silva CDG, Dos Santos BF, Souza NS, de Oliveira AR, Kupfer VL, Rinaldi AW, Domingues NLC. Cerium catalyst promoted C-S cross-coupling: synthesis of thioethers, dapsone and RN-18 precursors. Org Biomol Chem 2019; 17:10103-10108. [PMID: 31755516 DOI: 10.1039/c9ob02171j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we present a novel, efficient and green methodology for the synthesis of thioethers by the C-S cross-coupling reaction with the assistance of [Ce(l-Pro)2]2Ox as a heterogeneous catalyst in good to excellent yields. A scale-up of the protocol was explored using an unpublished methodology for the synthesis of a dapsone-precursor, which proved to be very effective over a short time. The catalyst [Ce(l-Pro)2]2Ox was recovered and it was shown to be effective for five more reaction cycles.
Collapse
Affiliation(s)
- José M da C Tavares Junior
- Organic Catalysis and Biocatalysis Laboratory - LACOB, Federal University of Grande Dourados - UFGD, Dourados, MS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pincer complexes, leading characters in C–H bond activation processes. Synthesis and catalytic applications. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Söderström M, Zamaratski E, Odell LR. BF
3
·SMe
2
for Thiomethylation, Nitro Reduction and Tandem Reduction/SMe Insertion of Nitrogen Heterocycles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Marcus Söderström
- Department of Medicinal Chemistry Uppsala University Uppsala, Biomedical Center P. O. Box 574 75123 Uppsala Sweden
| | - Edouard Zamaratski
- Department of Medicinal Chemistry Uppsala University Uppsala, Biomedical Center P. O. Box 574 75123 Uppsala Sweden
| | - Luke R. Odell
- Department of Medicinal Chemistry Uppsala University Uppsala, Biomedical Center P. O. Box 574 75123 Uppsala Sweden
| |
Collapse
|
13
|
Lynn MA, Miecznikowski JR, Jasinski JP, Kaur M, Mercado BQ, Reinheimer E, Almanza EM, Kharbouch RM, Smith MR, Zygmont SE, Flaherty NF, Smith AC. Copper(I) SNS pincer complexes: Impact of ligand design and solvent coordination on conformer interconversion from spectroscopic and computational studies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Agrahari B, Layek S, Ganguly R, Dege N, Pathak DD. Synthesis, characterization and single crystal X-ray studies of pincer type Ni(II)-Schiff base complexes: Application in synthesis of 2-substituted benzimidazoles. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Magné V, Ball LT. Synthesis of Air-stable, Odorless Thiophenol Surrogates via Ni-Catalyzed C-S Cross-Coupling. Chemistry 2019; 25:8903-8910. [PMID: 31067346 DOI: 10.1002/chem.201901874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/07/2019] [Indexed: 11/09/2022]
Abstract
Thiophenols are versatile synthetic intermediates whose practical appeal is marred by their air sensitivity, toxicity and extreme malodor. Herein we report an efficient catalytic method for the preparation of S-aryl isothiouronium salts, and demonstrate that these air-stable, odorless solids serve as user-friendly sources of thiophenols in synthesis. Diverse isothiouronium salts featuring synthetically useful functionality are readily accessible by nickel-catalyzed C-S cross-coupling of (hetero)aryl iodides and thiourea. Convenient, chromatography-free isolation of these salts is achieved by precipitation, allowing the methodology to be applied directly to large scales. Thiophenols are liberated from the corresponding isothiouronium salts upon treatment with a weak base, enabling an in situ release/S-functionalization strategy that entirely negates the need to isolate, purify or manipulate these noxious reagents.
Collapse
Affiliation(s)
- Valentin Magné
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham, NG7 2TU, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Liam T Ball
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham, NG7 2TU, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K
| |
Collapse
|
16
|
Kai W, Qian H, Liu D, Ye Z. NCN-Pincer palladium complexes immobilized on MCM-41 molecular sieve: Application in α-arylation reactions. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Kurisu N, Asano E, Hatayama Y, Kurihara Y, Hashimoto T, Funatsu K, Ueda K, Yamaguchi Y. A β-Diketiminato-Based Pincer-Type Nickel(II) Complex: Synthesis and Catalytic Performance in the Cross-Coupling of Aryl Fluorides with Aryl Grignard Reagents. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nobutaka Kurisu
- Department of Advanced Materials Chemistry; Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai 240-8501 Hodogaya-ku, Yokohama Japan
| | - Erika Asano
- Department of Advanced Materials Chemistry; Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai 240-8501 Hodogaya-ku, Yokohama Japan
| | - Yuki Hatayama
- Department of Advanced Materials Chemistry; Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai 240-8501 Hodogaya-ku, Yokohama Japan
| | - Youji Kurihara
- Department of Advanced Materials Chemistry; Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai 240-8501 Hodogaya-ku, Yokohama Japan
| | - Toru Hashimoto
- Department of Advanced Materials Chemistry; Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai 240-8501 Hodogaya-ku, Yokohama Japan
| | - Kei Funatsu
- Department of Advanced Materials Chemistry; Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai 240-8501 Hodogaya-ku, Yokohama Japan
| | - Kazuyoshi Ueda
- Department of Advanced Materials Chemistry; Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai 240-8501 Hodogaya-ku, Yokohama Japan
| | - Yoshitaka Yamaguchi
- Department of Advanced Materials Chemistry; Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai 240-8501 Hodogaya-ku, Yokohama Japan
| |
Collapse
|
18
|
Serrano-Becerra JM, Valdés H, Canseco-González D, Gómez-Benítez V, Hernández-Ortega S, Morales-Morales D. C-S cross-coupling reactions catalyzed by a non-symmetric phosphinito-thiophosphinito PSCOP-Ni(II) pincer complex. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Gushchin AL, Shmelev NY, Malysheva SF, Artem’ev AV, Belogorlova NA, Abramov PA, Kompan’kov NB, Manoury E, Poli R, Sheven DG, Llusar R, Sokolov MN. Hemilability of phosphine-thioether ligands coordinated to trinuclear Mo 3S 4 cluster and its effect on hydrogenation catalysis. NEW J CHEM 2018. [DOI: 10.1039/c8nj03720e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phosphine-thioether ligands were coordinated to the Mo3S4 cluster to afford [Mo3S4Cl3(PS)3]+ complexes. Their catalytic activity in nitrobenzene reduction reflects the different hemilabile behaviours of PS1, PS2 and PS3.
Collapse
|