1
|
Zou Y, Bao SJ, Tang H, Zhang HN, Jin GX. Synergizing Steric Hindrance and Stacking Interactions To Facilitate the Controlled Assembly of Multiple 4 1 Metalla-Knots and Pseudo-Solomon Links. Angew Chem Int Ed Engl 2024; 63:e202410722. [PMID: 38965047 DOI: 10.1002/anie.202410722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
In this work, a noncoplanar terphenyl served as a building block to synthesize a novel 3,3'-substituted bipyridyl ligand (L1) which further reacted with binuclear half-sandwich units A/B, giving rise to two aesthetic 41 metalla-knots in high yields via a coordination-driven self-assembly strategy. Furthermore, given the inherent compactness of the 41 metalla-knots, it creates favorable conditions for the emergence of steric repulsion. We focused on progressively introducing nitrogen atoms featuring a lone pair of electrons (LPEs) into ligand L1 to manipulate the balance of H⋅⋅⋅H/LPEs⋅⋅⋅LPEs steric repulsion during the assembly process, ultimately achieving controlled assembly from 41 metalla-knots to the pseudo-Solomon link and then to molecular tweezer-like assembly facilitated by stacking interactions. All the assemblies were well characterized by solution-state NMR techniques, ESI-TOF/MS, and single-crystal X-ray diffraction. The evolutionary process of the topological architectures is equivalent to visualizing the synergistic effect of steric hindrance and stacking interactions on structural assembly, providing a new avenue for achieving the controlled synthesis of different topologies.
Collapse
Affiliation(s)
- Yan Zou
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Shu-Jin Bao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Haitong Tang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Karpiuk TE, Leznoff DB. Anisotropic Thermal Expansion of Structurally Related Lanthanide-Mercury(II) Cyanide Coordination Polymers. Inorg Chem 2024; 63:4039-4052. [PMID: 38145423 DOI: 10.1021/acs.inorgchem.3c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Three sets of related lanthanide-mercury(II) cyanide coordination polymers were synthesized by the reaction of LnCl3·xH2O (Ln = Ce, Nd, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu) with Hg(CN)2 and structurally characterized. [Ce(OH2)5][Hg(CN)2Cl]3·2H2O is a 3-D material with sheet-based architecture; its thermal expansion behavior shows uniaxial negative thermal expansion (-18.3(8), 39(2), and 68.3(16) ppm K-1 along the a, b, and c axes, respectively). This anisotropic thermal behavior is postulated to be driven elastically by weak Hg···Cl interactions: large area expansion of the sheets causes negative thermal expansion in the perpendicular direction. Using lanthanides heavier than Ce yielded 2-D sheet-based compounds with the formula [Ln(OH2)x]2[Hg(CN)2]5Cl6·2H2O (Ln = Nd and Eu, x = 7; Ln = Gd, Tb, Dy, Ho, Tm, Yb, and Lu, x = 6). Although there was also evidence for elastic behavior within these materials, both showed uniaxial zero thermal expansion (Ln = Nd: 27.9(17), 22.4(10), and 0.6(12) ppm K-1 along the I, II, and III principal axes, respectively; Ln = Tb: 39.6(12), 1.1(17), and 36.1(7) ppm K-1 along the a, b, and c axes, respectively). Despite their similar structural architecture, this zero thermal expansion was found to occur in different directions─within the plane of the 2-D sheets for [Nd(OH2)7]2[Hg(CN)2]5Cl6·2H2O but in the direction perpendicular to the 2-D sheets for [Tb(OH2)6]2[Hg(CN)2]5Cl6·2H2O. Overall, this system of compounds reveals the delicate relationship between coordination polymer structure and thermal expansion.
Collapse
Affiliation(s)
- Thomas E Karpiuk
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniel B Leznoff
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
3
|
Abstract
The new bis(alkynyl)mercurial Hg{CCSeCW(CO)2(Tp*)}2 (Tp* = tris(dimethylpyrazolyl)borate) forms adducts with fluoride and phenathroline, the structures of which are interpreted in the context of two-coordinate mercury presenting a σ-torroid for spodium bonding.
Collapse
Affiliation(s)
- Chee S Onn
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| | - Anthony F Hill
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| | - Jas S Ward
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
- Department of Chemistry, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| |
Collapse
|
4
|
Weiser J, Cui J, Dewhurst RD, Braunschweig H, Engels B, Fantuzzi F. Structure and bonding of proximity-enforced main-group dimers stabilized by a rigid naphthyridine diimine ligand. J Comput Chem 2023; 44:456-467. [PMID: 36054757 DOI: 10.1002/jcc.26994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
The development of ligands capable of effectively stabilizing highly reactive main-group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity-enforced group 13-15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8-naphthyridine (napy) core. We show that the redox-active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element-element interaction modes, the latter ranging from isolated, element-centered lone pairs (e.g., E = Si, Ge) to cases where through-space π bonds (E = Pb), element-element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI-E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy-based ligands in main-group chemistry.
Collapse
Affiliation(s)
- Jonas Weiser
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jingjing Cui
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,School of Chemistry and Forensic Science, University of Kent, Canterbury, UK
| |
Collapse
|
5
|
Giordana A, Priola E, Pantaleone S, Andreo L, Mortati L, Benzi P, Operti L, Diana E. HgBrI: a possible tecton for NLO molecular materials? Dalton Trans 2022; 51:5296-5308. [PMID: 35293407 DOI: 10.1039/d2dt00201a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixed mercury(II) halogenides have been known for a long time as good NLO (non-linear optic) materials. The NLO properties are due to the halogen disposition in the solid state and the electron distribution among the bonds formed by soft elements. We investigated the possibility of using HgBrI as a asymmetric tecton in the preparation of noncentrosymmetric crystalline compounds, by exploiting the coordinating power of Hg(II) toward N-donor ligands, and seven coordination complexes have been obtained. To unravel the nature of these complex systems we combined the data from different techniques: Raman spectroscopy, SC-XRD and Second Harmonic Generation, supported by a periodic DFT computational approach. In HgBrI crystalline products with low symmetry, the presence of substitutional disorder leads to a lack of the inversion center conferring NLO activity, which is absent in analogous complexes of Hg(II) halogenides. These results indicate HgBrI as an interesting tecton to obtain metallorganic NLO materials.
Collapse
Affiliation(s)
- Alessia Giordana
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Emanuele Priola
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Stefano Pantaleone
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy. .,Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, I-06123 Perugia, Italy
| | - Luca Andreo
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Leonardo Mortati
- INRIM, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | - Paola Benzi
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Lorenza Operti
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Eliano Diana
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
6
|
Priola E, Giordana A, Gomila RM, Zangrando E, Andreo L, Rabezzana R, Operti L, Diana E, Mahmoudi G, Frontera A. Metallophilic interactions in silver(I) dicyanoaurate complexes. Dalton Trans 2022; 51:5818-5827. [DOI: 10.1039/d2dt00615d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript reports four new gold(I)−silver(I) complexes with 2-(2-pyridyl)-1,8-naphthyridine (pyNP) and terpyridine (terpy) as ancillary ligands, of formulation [Ag(pyNP)(Au(CN)2)]2 (1), [Ag2Au2(μ-CN)2(CN)2(pyNP)2] (2), [Ag2Au(μ-CN)2(terpy)2][Au(CN)2] (3) and [Ag4Au4(μ-CN)8(terpy)2(py)] (4). Complexes 1 and...
Collapse
|
7
|
Diana E, Priola E, Marabello D, Giordana A, Andreo J, Freire PTC, Benzi P, Operti L, Andreo L, Curetti N, Benna P. Crystal engineering of aurophilic supramolecular architectures and coordination polymers based on butterfly-like Copper-dicyanoaurate complexes: vapochromism, P-T behaviour and multi-metallic cocrystal formation. CrystEngComm 2022. [DOI: 10.1039/d1ce00964h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the equilibrium properties of CuII in the presence of the chelating ligand and the characteristics of the dicyanoaurate anion, we were able to obtain a family of 10 bimetallic...
Collapse
|
8
|
Cui J, Dietz M, Härterich M, Fantuzzi F, Lu W, Dewhurst RD, Braunschweig H. Diphosphino-Functionalized 1,8-Naphthyridines: a Multifaceted Ligand Platform for Boranes and Diboranes. Chemistry 2021; 27:15751-15756. [PMID: 34545966 PMCID: PMC9292315 DOI: 10.1002/chem.202102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 12/25/2022]
Abstract
A 1,8-naphthyridine diphosphine (NDP) reacts with boron-containing Lewis acids to generate complexes featuring a number of different naphthyridine bonding modes. When exposed to diborane B2 Br4 , NDP underwent self-deprotonation to afford [NDP-B2 Br3 ]Br, an unsymmetrical diborane comprised of four fused rings. The reaction of two equivalents of monoborane BBr3 and NDP in a non-polar solvent provided the simple phosphine-borane adduct [NDP(BBr3 )2 ], which then underwent intramolecular halide abstraction to furnish the salt [NDP-BBr2 ][BBr4 ], featuring a different coordination mode from that of [NDP-B2 Br3 ]Br. Direct deprotonation of NDP by KHMDS or PhCH2 K generates mono- and dipotassium reagents, respectively. The monopotassium reagent reacts with one or half an equivalent of B2 (NMe2 )2 Cl2 to afford NDP-based diboranes with three or four amino substituents.
Collapse
Affiliation(s)
- Jingjing Cui
- School of Chemistry and Environmental EngineeringWuhan Institute of TechnologyWuhan430205P. R. China
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maximilian Dietz
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Marcel Härterich
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felipe Fantuzzi
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Str. 4297074WürzburgGermany
| | - Wei Lu
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
9
|
Giordana A, Priola E, Gariglio G, Bonometti E, Operti L, Diana E. Reticular chemistry applied on coordination polymers of Copper(I) cyanide with tridentate ligands: effect of the ligand flexibility and donor properties on topology, dimensionality and reaction behavior in solvothermal conditions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Shields DJ, Elkoush T, Miura-Stempel E, Mak CL, Niu GH, Gudmundsdottir AD, Campbell MG. Visible Light Absorption and Long-Lived Excited States in Dinuclear Silver(I) Complexes with Redox-Active Ligands. Inorg Chem 2020; 59:18338-18344. [DOI: 10.1021/acs.inorgchem.0c02938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dylan J. Shields
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Tasneem Elkoush
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Emily Miura-Stempel
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Choi L. Mak
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Guang-Hao Niu
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Anna D. Gudmundsdottir
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Michael G. Campbell
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| |
Collapse
|
11
|
Priola E, Volpi G, Rabezzana R, Borfecchia E, Garino C, Benzi P, Martini A, Operti L, Diana E. Bridging Solution and Solid-State Chemistry of Dicyanoaurate: The Case Study of Zn–Au Nucleation Units. Inorg Chem 2019; 59:203-213. [DOI: 10.1021/acs.inorgchem.9b00961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emanuele Priola
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Giorgio Volpi
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Roberto Rabezzana
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Elisa Borfecchia
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Claudio Garino
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Paola Benzi
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Andrea Martini
- Department of Physics, University of Turin, Via P. Giuria 1, 10125 Turin, Italy
- International Research Institute “Smart Materials”, Southern Federal University, Zorge Street 5, 344090 Rostov-on-Don, Russia
| | - Lorenza Operti
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Eliano Diana
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
- CriSDi, Interdepartmental Center for Crystallography, Via Pietro Giuria 7, 10125 Turin, Italy
| |
Collapse
|
12
|
Carpenter JP, McTernan CT, Ronson TK, Nitschke JR. Anion Pairs Template a Trigonal Prism with Disilver Vertices. J Am Chem Soc 2019; 141:11409-11413. [PMID: 31282153 PMCID: PMC6756586 DOI: 10.1021/jacs.9b05432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Here
we describe the formation of a trigonal prismatic cage, utilizing
2-formyl-1,8-naphthyridine subcomponents to bind pairs of silver(I)
ions in close proximity. This cage is the first example of a new class
of subcomponent self-assembled polyhedral structures having bimetallic
vertices, as opposed to the single metal centers that typically serve
as structural elements within such cages. Our new cage self-assembles
around a pair of anionic templates, which are shown by crystallographic
and solution-phase data to bind within the central cavity of the structure.
Many different anions serve as competent templates and guests. Elongated
dianions, such as the strong oxidizing agent peroxysulfate, also serve
to template and bind within the cavity of the prism. The principle
of using subcomponents that have more than one spatially close, but
nonchelating, binding site may thus allow access to other higher-order
structures with multimetallic vertices.
Collapse
Affiliation(s)
- John P Carpenter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Charlie T McTernan
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
13
|
Niu GH, Wentz HC, Zheng SL, Campbell MG. Silver(I) coordination polymers from dinucleating naphthyridine ligands. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|