1
|
Catevas N, Tsipis A. Axial Ligand Effects on the Mechanism of Ru-CO Bond Photodissociation and Photophysical Properties of Ru(II)-Salen PhotoCORMs/Theranostics: A Density Functional Theory Study. Molecules 2025; 30:1147. [PMID: 40076369 DOI: 10.3390/molecules30051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Density functional theory (DFT) calculations were employed to study a series of complexes of general formula [Ru(salen)(X)(CO)]0/-1 (X = Cl-, F-, SCN-, DMSO, Phosphabenzene, Phosphole, TPH, CN-, N3-, NO3-, CNH-, NHC, P(OH)3, PF3, PH3). The effect of ligands X on the Ru-CO bond was quantified by the trans-philicity, Δσ13C NMR parameter. The potential of Δσ13C to be used as a probe of the CO photodissociation by Ru(II) transition metal complexes is established upon comparing it with other trans-effect parameters. An excellent linear correlation is found between the energy barrier for the Ru-CO photodissociation and the Δσ13C parameter, paving the way for studying photoCORMs with the 13C NMR method. The strongest trans-effect on the Ru-CO bond in the [Ru(salen)(X)(CO)]0/-1 complexes are found when X = CNH-, NHC, and P(OH)3, while the weakest for X = Cl-, NO3- and DMSO trans-axial ligands. The Ru-CO bonding properties were scrutinized using Natural Bond Orbital (NBO), Natural Energy Decomposition Analysis (NEDA) and Natural Orbital of Chemical Valence (NOCV) methods. The nature of the Ru-CO bond is composite, i.e., electrostatic, covalent and charge transfer. Both donation and backdonation between CO ligand and Ru metal centre equally stabilize the Ru(II) complexes. Ru-CO photodissociation proceeds via a 3MC triplet excited state, exhibiting a conical intersection with the T13MLCT excited state. Calculations show that these complexes show bands within visible while they are expected to be red emitters. Therefore, the [Ru(salen)(X)(CO)]0/-1 complexes under study could potentially be used for dual action, photoCORMs and theranostics compounds.
Collapse
Affiliation(s)
- Niq Catevas
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Athanassios Tsipis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Mudrak V, Lacroix PG, Tassé M, Mallet-Ladeira S, Roshal A, Malfant I. Ruthenium nitrosyl complexes with NO release capability: the use of fluorene as an antenna. Dalton Trans 2024; 53:9777-9791. [PMID: 38780443 DOI: 10.1039/d4dt01154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A ruthenium nitrosyl complex of formula [RuII(fluorene(C6)CH2O-terpy)(bipy)(NO)]3+ (AC) in which fluorene(C6) is the 9,9-dihexylfluorene, terpy the 2,2';6',2''-terpyridine, and bipy the 2,2'-bipyridine is presented with its related [RuII(MeO-terpy)(bipy)(NO)]3+ (C) and 9,9-dihexylfluorene 2-hydroxymethylfluorene (A) building blocks. The reference complex C undergoes NO release capabilities under irradiation at λ = 365 nm. The effect of the introduction of the fluorescent A antenna within the resulting AC complex is discussed both experimentally and theoretically. The importance of the encaging parameter defined as ϕAC·IAC, in which IAC is the quantity of light absorbed by AC and ϕAC the quantum yield of NO release is evidenced and found to be concentration dependent. The conditions of optimization of the antenna approach to maximize ϕAC·IAC are discussed. The crystal structure of [RuII(fluorene(C6)CH2O-terpy)(bipy)(NO2)](PF6), the last intermediate in the synthesis of AC is also presented.
Collapse
Affiliation(s)
- Vladyslav Mudrak
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, F-31077 Toulouse, France.
- Institute of Chemistry at V.N. Karazin Kharkiv National University, 4 Svobody sqr., Kharkov 61022, Ukraine
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, F-31077 Toulouse, France.
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, F-31077 Toulouse, France.
| | - Sonia Mallet-Ladeira
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, F-31077 Toulouse, France.
- Institut de Chimie de Toulouse (ICT, UAR 2599), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Alexander Roshal
- Institute of Chemistry at V.N. Karazin Kharkiv National University, 4 Svobody sqr., Kharkov 61022, Ukraine
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, F-31077 Toulouse, France.
| |
Collapse
|
3
|
Juarez-Martinez Y, Labra-Vázquez P, Lacroix PG, Tassé M, Mallet-Ladeira S, Pimienta V, Malfant I. Photorelease of Nitric Oxide (NO) in Mono- and Bimetallic Ruthenium Nitrosyl Complexes: A Photokinetic Investigation with a Two-Step Model. Inorg Chem 2024; 63:7665-7677. [PMID: 38623892 DOI: 10.1021/acs.inorgchem.3c04496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Two monometallic and three bimetallic ruthenium acetonitrile (RuMeCN) complexes are presented and fully characterized. All of them are built from the same skeleton [FTRu(bpy)(MeCN)]2+, in which FT is a fluorenyl-substituted terpyridine ligand and bpy is the 2,2'-bipyridine. The crystal structure of [FTRu(bpy)(MeCN)](PF6)2 is presented. A careful spectroscopic analysis allows establishing that these 5 RuMeCN complexes can be identified as the product of the photoreaction of 5 related RuNO complexes, investigated as efficient nitric oxide (NO) donors. Based on this set of complexes, the mechanism of the NO photorelease of the bimetallic complexes has been established through a complete investigation under irradiations performed at 365, 400, 455, and 490 nm wavelength. A two-step (A → B → C) kinetic model specially designed for this purpose provides a good description of the mechanism, with quantum yields of photorelease in the range 0.001-0.029, depending on the irradiation wavelength. In the first step of release, the quantum yields (ϕAB) are always found to be larger than those of the second step (ϕBC), at any irradiation wavelengths.
Collapse
Affiliation(s)
- Yael Juarez-Martinez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Sonia Mallet-Ladeira
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
- Institut de Chimie de Toulouse (ICT, UAR 2599), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Véronique Pimienta
- Laboratoire SOFTMAT, Université Toulouse III, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| |
Collapse
|
4
|
Bhowmik R, Roy M. Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. Eur J Med Chem 2024; 268:116217. [PMID: 38367491 DOI: 10.1016/j.ejmech.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Nitric oxide (NO) is an important biological messenger as well as a signaling molecule that participates in a broad range of physiological events and therapeutic applications in biological systems. However, due to its very short half-life in physiological conditions, its therapeutic applications are restricted. Efforts have been made to develop an enormous number of NO-releasing molecules (NORMs) and motifs for NO delivery to the target tissues. These NORMs involve organic nitrate, nitrite, nitro compounds, transition metal nitrosyls, and several nanomaterials. The controlled release of NO from these NORMs to the specific site requires several external stimuli like light, sound, pH, heat, enzyme, etc. Herein, we have provided a comprehensive review of the biochemistry of nitric oxide, recent advancements in NO-releasing materials with the appropriate stimuli of NO release, and their biomedical applications in cancer and other disease control.
Collapse
Affiliation(s)
- Rintu Bhowmik
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India.
| |
Collapse
|
5
|
Kim M, Park S, Song D, You Y, Lim M, Lee HI. Effect of Electron-donating Group on NO Photolysis of {RuNO} 6 Ruthenium Nitrosyl Complexes with N 2 O 2 Lgands Bearing π-Extended Rings. Chem Asian J 2024; 19:e202300908. [PMID: 37969065 DOI: 10.1002/asia.202300908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
In this study, we introduced the electron-donating group (-OH) to the aromatic rings of Ru(salophen)(NO)Cl (0) (salophenH2 =N,N'-(1,2-phenylene)bis(salicylideneimine)) to investigate the influence of the substitution on NO photolysis and NO-releasing dynamics. Three derivative complexes, Ru((o-OH)2 -salophen)(NO)Cl (1), Ru((m-OH)2 -salophen)(NO)Cl (2), and Ru((p-OH)2 -salophen)(NO)Cl (3) were developed and their NO photolysis was monitored by using UV/Vis, EPR, NMR, and IR spectroscopies under white room light. Spectroscopic results indicated that the complexes were diamagnetic Ru(II)-NO+ species which were converted to low-spin Ru(III) species (d5 , S=1/2) and released NO radicals by photons. The conversion was also confirmed by determining the single-crystal structure of the photoproduct of 1. The photochemical quantum yields (ΦNO s) of the photolysis were determined to be 0>1, 2, 3 at both the visible and UV excitations. Femtosecond (fs) time-resolved mid-IR spectroscopy was employed for studying NO-releasing dynamics. The geminate rebinding (GR) rates of the photoreleased NO to the photolyzed complexes were estimated to be 0≃1, 2, 3. DFT and TDDFT computations found that the introduction of the hydroxyl groups elevated the ligand π-bonding orbitals (π (salophen)), resulting in decrease of the HOMO-LUMO gaps in 1-3. The theoretical calculations suggested that the Ru-NNO bond dissociations of the complexes were mostly initiated by the ligand-to-ligand charge transfer (LLCT) of π(salophen)→π*(Ru-NO) with both the visible and UV excitations and the decreasing ΦNO s could be explained by the changes of the electronic structures in which the photoactivable bands of 1-3 have relatively less contribution of transitions related with Ru-NO bond than those of 0.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Dayoon Song
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hong-In Lee
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
6
|
Labra-Vázquez P, Mudrak V, Tassé M, Mallet-Ladeira S, Sournia-Saquet A, Malval JP, Lacroix PG, Malfant I. Acetylacetonate Ruthenium Nitrosyls: A Gateway to Nitric Oxide Release in Water under Near-Infrared Excitation by Two-Photon Absorption. Inorg Chem 2023. [PMID: 37994054 DOI: 10.1021/acs.inorgchem.3c03355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
A fundamental challenge for phototriggered therapies is to obtain robust molecular frameworks that can withstand biological media. Photoactivatable nitric oxide (NO) releasing molecules (photoNORMs) based on ruthenium nitrosyl (RuNO) complexes are among the most studied systems due to several appealing features that make them attractive for therapeutic applications. Nevertheless, the propensity of the NO ligand to be attacked by nucleophiles frequently manifests as significant instability in water for this class of photoNORMs. Our approach to overcome this limitation involved enhancing the Ru-NO π-backbonding to lower the electrophilicity at the NO by replacing the commonly employed 2,2'-bipyridine (bpy) ligand by an anionic, electron-rich, acetylacetonate (acac). A versatile and convenient synthetic route is developed and applied for the preparation of a large library of RuNO photoNORMs with the general formula [RuNO(tpy)(acac)]2+ (tpy = 2,2':6',2″-terpyridine). A combined theoretical and experimental analysis of the Ru-NO bonding in these complexes is presented, supported by extensive single-crystal X-ray diffraction experiments and by topological analyses of the electron charge density by DFT. The enhanced π-back-bonding, systematically evidenced by several techniques, resulted in a remarkable stability in water for these complexes, where significant NO release efficiencies were recorded. We finally demonstrate the possibility of obtaining sophisticated water-stable multipolar NO-delivery platforms that can be activated in the near-IR region by two-photon absorption (TPA), as demonstrated for an octupolar complex with a TPA cross section of 1530 GM at λ = 800 nm and for which NO photorelease was demonstrated under TPA irradiation in aqueous media.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Vladyslav Mudrak
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Sonia Mallet-Ladeira
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Alix Sournia-Saquet
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse CNRS-UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| |
Collapse
|
7
|
Sharma N, Kumar V, Jose DA. A ruthenium nitrosyl complex-based highly selective colorimetric sensor for biological H 2S and H 2S-NO cross-talk regulated release of NO. Dalton Trans 2023; 52:675-682. [PMID: 36537888 DOI: 10.1039/d2dt03108f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A ruthenium nitrosyl complex (1·NO) and 1·NO incorporated phospholipid-based liposomes (Lip-1·NO) were reported for highly selective colorimetric detection of H2S. The probe 1·NO "cross-talks" with H2S and releases nitric oxide (NO) in the process. The detection limit for H2S was found to be 0.31 μM and 0.45 μM in the cases of 1·NO and Lip-1·NO, respectively. The DAF-FM DA assay has been performed to confirm the H2S-induced NO release from 1·NO and Lip-1·NO. The sensing of H2S was also verified by ESI-MS and FT-IR spectroscopy. It was also observed that external stimuli, H2S and light worked in an almost similar way to release NO as observed by UV-Vis spectroscopy. A molecular logic gate operation "OR" was applied to the probe 1·NO in combination with inputs 'light' and 'H2S' to give the output 'NO release'. Hence, the probe 1·NO performs the dual work of sensing H2S with a colorimetric response, releasing NO upon cross-talk between NO and H2S.
Collapse
Affiliation(s)
- Nancy Sharma
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India.
| | - Vinod Kumar
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India.
| | - D Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India.
| |
Collapse
|
8
|
Lacroix PG, Malfant I, Labra-Vázquez P, Fárfan N, Ramos-Ortiz G. Two-photon absorption-based delivery of nitric oxide from ruthenium nitrosyl complexes. Dalton Trans 2022; 51:14833-14841. [PMID: 36169419 DOI: 10.1039/d2dt02553a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the discovery of the numerous physiological roles exhibited by nitric oxide (NO), ruthenium nitrosyl (RuNO) complexes have been regarded as one of the most promising NO donors, stable, well tolerated by the body and capable of releasing NO locally and quantitatively, under light irradiation. This release can be achieved by two-photon absorption (TPA) processes, which allow the irradiation to be performed in the near infrared domain, where light has its maximum depth of penetration in biological tissues. This review provides a short introduction on the biological properties of NO, on RuNO complexes with photo-releasing capabilities, and on the origin of TPA properties in molecules. Then, the RuNO complexes with TPA capabilities are thoroughly discussed either as monometallic or polymetallic species.
Collapse
Affiliation(s)
- Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France.
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France.
| | - Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France. .,Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | - Norberto Fárfan
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica (CIO), A.P. 1-948, 37000 León, Gto, Mexico
| |
Collapse
|
9
|
Juarez‐Martinez Y, Labra‐Vázquez P, Enríquez‐Cabrera A, Leon‐Rojas AF, Martínez‐Bourget D, Lacroix PG, Tassé M, Mallet‐Ladeira S, Farfán N, Santillan R, Ramos‐Ortiz G, Malval J, Malfant I. Bimetallic Ruthenium Nitrosyl Complexes with Enhanced Two‐Photon Absorption Properties for Nitric Oxide Delivery. Chemistry 2022; 28:e202201692. [DOI: 10.1002/chem.202201692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yael Juarez‐Martinez
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne F-31077 Toulouse France
| | - Pablo Labra‐Vázquez
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne F-31077 Toulouse France
- Facultad de Química Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 México D.F. México
| | - Alejandro Enríquez‐Cabrera
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne F-31077 Toulouse France
- Facultad de Química Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 México D.F. México
| | - Andrés F. Leon‐Rojas
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne F-31077 Toulouse France
- Facultad de Química Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 México D.F. México
| | - Diego Martínez‐Bourget
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne F-31077 Toulouse France
- Facultad de Química Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 México D.F. México
| | - Pascal G. Lacroix
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne F-31077 Toulouse France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne F-31077 Toulouse France
| | - Sonia Mallet‐Ladeira
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne F-31077 Toulouse France
| | - Norberto Farfán
- Facultad de Química Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 México D.F. México
| | - Rosa Santillan
- Departamento de Química Centro de Investigación y de Estudios del IPN CINVESTAV, Apdo. Postal 14–740 México, D.F. 07000 México
| | | | - Jean‐Pierre Malval
- Institut de Science des Matériaux de Mulhouse CNRS-UMR 7361 Université de Haute Alsace 15 rue Jean Starcky 68057 Mulhouse France
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne F-31077 Toulouse France
| |
Collapse
|
10
|
Kim M, Park S, Song D, Moon D, You Y, Lim M, Lee HI. Visible-light NO photolysis of ruthenium nitrosyl complexes with N 2O 2 ligands bearing π-extended rings and their photorelease dynamics. Dalton Trans 2022; 51:11404-11415. [PMID: 35822310 DOI: 10.1039/d2dt01019d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NO photorelease and its dynamics for two {RuNO}6 complexes, Ru(salophen)(NO)Cl (1) and Ru(naphophen)(NO)Cl (2), with salen-type ligands bearing π-extended systems (salophenH2 = N,N'-(1,2-phenylene)-bis(salicylideneimine) and naphophenH2 = N,N'-1,2-phenylene-bis(2-hydroxy-1-naphthylmethyleneimine)) were investigated. NO photolysis was performed under white room light and monitored by UV/Vis, EPR, and NMR spectroscopies. NO photolysis was also performed under 459 and 489 nm irradiation for 1 and 2, respectively. The photochemical quantum yields of the NO photolysis (ΦNO) of both 1 and 2 were determined to be 9% at the irradiation wavelengths. The structural and spectroscopic characteristics of the complexes before and after the photolysis confirmed the conversion of diamagnetic Ru(II)(L)(Cl)-NO+ to paramagnetic S = ½ Ru(III)(L)(Cl)-solvent by photons (L = salophen2- and naphophen2-). The photoreleased NO radicals were detected by spin-trapping EPR. DFT and TDDFT calculations found that the photoactive bands are configured as mostly the ligand-to-ligand charge transfer (LLCT) of π(L) → π*(Ru-NO), suggesting that the NO photorelease was initiated by the LLCT. Dynamics of NO photorelease from the complexes in DMSO under 320 nm excitation were investigated by femtosecond (fs) time-resolved mid-IR spectroscopy. The primary photorelease of NO occurred for less than 0.32 ps after the excitation. The rate constants (k-1) of the geminate rebinding of NO to the photolyzed 1 and 2 were determined to be (15 ps)-1 and (13 ps)-1, respectively. The photochemical quantum yields of NO photolysis (ΦNO, λ = 320 nm) were estimated to be no higher than 14% for 1 and 11% for 2, based on the analysis of the fs time-resolved IR data. The results of fs time-resolved IR spectroscopy and theoretical calculations provided some insight into the overall kinetic reaction pathway, localized electron pathway or resonance pathway, of the NO photolysis of 1 and 2. Overall, our study found that the investigated {RuNO}6 complexes, 1 and 2, with planar N2O2 ligands bearing π-extended rings effectively released NO under visible light.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| | - Dayoon Song
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dohyun Moon
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| | - Hong-In Lee
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
11
|
Photo controlled release of nitric oxide (NO) from amphiphilic and nanoscale vesicles based ruthenium nitrosyl complex: NO release and cytotoxicity studies. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Mechanistic insight into photoactivation of small inorganic molecules from the biomedical applications perspectives. BIOMEDICAL APPLICATIONS OF INORGANIC PHOTOCHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Stepanenko I, Zalibera M, Schaniel D, Telser J, Arion V. Ruthenium-nitrosyl complexes as NO-releasing molecules and potential anticancer drugs. Dalton Trans 2022; 51:5367-5393. [DOI: 10.1039/d2dt00290f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of new types of mono- and polynuclear ruthenium nitrosyl complexes is driving progress in the field of NO generation for a variety of applications. Light-induced Ru-NO bond dissociation...
Collapse
|
14
|
Ma F, Zhang TT, Zhang ZH, Tong HX, Yi XY. Photorelease of nitric oxide in water-soluble diruthenium nitrosyl complexes with phosphonate substituted pyridylpyrrole. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Cho JH, Kim M, You Y, Lee HI. A new photoactivable NO-releasing {Ru-NO} 6 ruthenium nitrosyl complex with a tetradentate ligand containing aniline and pyridine moieties. Chem Asian J 2021; 17:e202101244. [PMID: 34921511 DOI: 10.1002/asia.202101244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Indexed: 11/12/2022]
Abstract
A new type of photoactivable NO-releasing ruthenium nitrosyl complex, [Ru(EPBP)Cl(NO)], with a tetradentate ligand, N,N'-(ethane-1,2-diyldi-o-phenylene)-bis(pyridine-2-carboxamide) (= H2 EPBP) was synthesized. Single crystal X-ray crystallography revealed that the complex has a distorted octahedral coordination geometry and NO is positioned at cis to Cl- ion. NO-photolysis was observed under a white room light. The photodissociation of Ru-NO bond was identified by various techniques including X-ray crystallography, IR, UV/Vis absorption, electron paramagnetic resonance (EPR), and NMR spectroscopies. Quantum yields for the NO-photolysis of the complex in CH3 OH, CHCl3 , DMSO, CH3 CN, and CH3 NO2 were measured to be 0.19-0.36 with 400 (±5) nm excitation. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations were performed to understand the details of the photodissociation of the complex. The calculations suggest that the NO photolysis is most likely initiated by the electronic transition from the aniline moiety π MOs (π (aniline)) of the EPBP2- chelating ligand to the π-antibonding MO of Ru-NO (π*(Ru-NO)). Experimental and theoretical investigations indicate that the EPBP2- ligand provides an effective platform forming ruthenium nitrosyl complexes useful for NO-photoreleasing.
Collapse
Affiliation(s)
- Jang-Hoon Cho
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minyoung Kim
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science and Graduated Program in System Health Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hong-In Lee
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
16
|
Bukhanko V, León‐Rojas AF, Lacroix PG, Tassé M, Ramos‐Ortiz G, Barba‐Barba RM, Farfán N, Santillan R, Malfant I. Two‐Photon Absorption Properties in “Push‐Pull” Ruthenium Nitrosyl Complexes with various Fluorenylterpyridine‐Based Ligands. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Valerii Bukhanko
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne 31077 Toulouse France
| | - Andrés Felipe León‐Rojas
- Facultad de Química, Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 CDMX. México
| | - Pascal G. Lacroix
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne 31077 Toulouse France
| | - Marine Tassé
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne 31077 Toulouse France
| | | | | | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 CDMX. México
| | - Rosa Santillan
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN 07000, A.P. 14–740 Ciudad de México México
| | - Isabelle Malfant
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne 31077 Toulouse France
| |
Collapse
|
17
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
da Silva ET, da Silva TU, de Carvalho Pougy K, da Silveira RB, da Silva RS, Machado SDP. A DFT study of cis-[Ru(NO)(NO2)bpy(dye)2]+ complexes as NO donors. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Labra-Vázquez P, Bocé M, Tassé M, Mallet-Ladeira S, Lacroix PG, Farfán N, Malfant I. Chemical and photochemical behavior of ruthenium nitrosyl complexes with terpyridine ligands in aqueous media. Dalton Trans 2020; 49:3138-3154. [PMID: 32076692 DOI: 10.1039/c9dt04832d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis and behavior in water of a set of various cis(Cl,Cl)-[R-tpyRuCl2(NO)](PF6) and trans(Cl,Cl)-[R-tpyRuCl2(NO)](PF6) (R = fluorenyl, phenyl, thiophenyl; tpy = 2,2':6',2''-terpyridine) complexes are presented. In any case, one chlorido ligand is substituted by a hydroxo ligand and the final species arises as a single trans(NO,OH) isomer, whatever the nature of the starting cis/trans(Cl,Cl) complexes. Six X-ray crystal structures are presented for cis(Cl,Cl)-[thiophenyl-tpyRuCl2(NO)](PF6) (cis-3a), trans(Cl,Cl)-[thiophenyl-tpyRuCl2(NO)](PF6) (trans-3a), trans(NO,OH)-[phenyl-tpyRu(Cl)(OH)(NO)](PF6) (4a), trans(NO,OH)-[thiophenyl-tpyRu(Cl)(OH)(NO)](PF6) (4b), trans(NO,OEt)-[phenyl-tpyRu(Cl)(OEt)(NO)](PF6) (5a), and trans(NO,OH)-[phenyl-tpyRu(Cl)(OEt)(NO)](PF6) (5b) compounds. The different cis/trans(Cl,Cl) complexes exhibit an intense low-lying transition in the λ = 330-390 nm range, which appears to be slightly blue-shifted after Cl → OH substitution. In water, both cis/trans(Cl,Cl) isomers are converted to a single trans(NO,OH) isomer in which one chlorido- is replaced by one hydroxo-ligand, which avoids tedious separation workout. The water stable trans(NO,OH)-species all release NO with quantum yields of 0.010 to 0.075 under irradiation at 365 nm. The properties are discussed with computational analysis performed within the framework of Density Functional Theory.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Wei T, Lu S, Sun J, Xu Z, Yang X, Wang F, Ma Y, Shi YS, Chen X. Sanger's Reagent Sensitized Photocleavage of Amide Bond for Constructing Photocages and Regulation of Biological Functions. J Am Chem Soc 2020; 142:3806-3813. [PMID: 32023409 DOI: 10.1021/jacs.9b11357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photolabile groups offer promising tools to study biological processes with high spatial and temporal control. In the investigation, we designed and prepared several new glycine amide derivatives of Sanger's reagent and demonstrated that they serve as a new class of photocages for Zn2+ and an acetylcholinesterase (AChE) inhibitor. We showed that the mechanism for photocleavage of these substances involves initial light-driven cyclization between the 2,4-dinitrophenyl and glycine methylene groups to form acyl benzimidazole N-oxides, which undergo secondary photoinduced decarboxylation in association with rupture of an amide bond. The cleavage reactions proceed with modest to high quantum yields. We demonstrated that these derivatives can be used in targeted intracellular delivery of Zn2+, fluorescent imaging by light-triggered Zn2+ release, and regulation of biological processes including the enzymatic activity of carbonic anhydrase (CA), negative regulation of N-methyl-d-aspartate receptors (NMDARs), and pulse rate of cardiomyocytes. The successful proof-of-concept examples described above open a new avenue for using Sanger's reagent-based glycine amides as photocages for the exploration of complex cellular functions and signaling pathways.
Collapse
Affiliation(s)
- Tingwen Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Jiahui Sun
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210032 , China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center , Nanjing University , Nanjing 210032 , China
| | - Zhijun Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Xiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Yang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210032 , China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center , Nanjing University , Nanjing 210032 , China.,Chemistry and Biomedicine Innovation Center , Nanjing University , Nanjing 210032 , China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| |
Collapse
|
21
|
Sasaki I, Amabilino S, Mallet-Ladeira S, Tassé M, Sournia-Saquet A, Lacroix PG, Malfant I. Further studies on the photoreactivities of ruthenium–nitrosyl complexes with terpyridyl ligands. NEW J CHEM 2019. [DOI: 10.1039/c9nj02398d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure of the ruthenium terpyridyl complex to NO gas leads to the ruthenium–NO complex with nitrosation of the ligand.
Collapse
|
22
|
Bruneau M, Bennici S, Brendle J, Dutournie P, Limousy L, Pluchon S. Systems for stimuli-controlled release: Materials and applications. J Control Release 2019; 294:355-371. [DOI: 10.1016/j.jconrel.2018.12.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/15/2023]
|
23
|
Roose M, Tassé M, Lacroix PG, Malfant I. Nitric oxide (NO) photo-release in a series of ruthenium–nitrosyl complexes: new experimental insights in the search for a comprehensive mechanism. NEW J CHEM 2019. [DOI: 10.1039/c8nj03907k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of nitric oxide release is investigated along a series of 1–3 “push–pull” ruthenium nitrosyl complexes.
Collapse
Affiliation(s)
- Max Roose
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 205 route de Narbonne
- 31077 Toulouse
- France
| | - Marine Tassé
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 205 route de Narbonne
- 31077 Toulouse
- France
| | - Pascal G. Lacroix
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 205 route de Narbonne
- 31077 Toulouse
- France
| | - Isabelle Malfant
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 205 route de Narbonne
- 31077 Toulouse
- France
| |
Collapse
|