1
|
Okada A, Niki R, Inoue Y, Tomita J, Todo H, Itakura S, Sugibayashi K. Development of Self-Administered Formulation to Improve the Bioavailability of Leuprorelin Acetate. Pharmaceutics 2022; 14:785. [PMID: 35456619 PMCID: PMC9031317 DOI: 10.3390/pharmaceutics14040785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, the development of self-injectable formulations has attracted much attention, and the development of formulations to control pharmacokinetics, as well as drug release and migration in the skin, has become an active research area. In the present study, the development of a lipid-based depot formulation containing leuprorelin acetate (LA) as an easily metabolizable drug in the skin was prepared with a novel non-lamellar liquid-crystal-forming lipid of mono-O-(5,9,13-trimethyl-4-tetradecenyl) glycerol ester (MGE). Small-angle X-ray scattering, cryo-transmission electron microscopy, and nuclear magnetic resonance observations showed that the MGE-containing formulations had a face-centered cubic packed micellar structure. In addition, the bioavailability (BA) of LA after subcutaneous injection was significantly improved with the MGE-containing formulation compared with the administration of LA solution. Notably, higher Cmax and faster Tmax were obtained with the MGE-containing formulation, and the BA increased with increasing MGE content in the formulation, suggesting that LA migration into the systemic circulation and its stability might be enhanced by MGE. These results may support the development of self-administered formulations of peptide drugs as well as nucleic acids, which are easily metabolized in the skin.
Collapse
Affiliation(s)
- Akie Okada
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan; (A.O.); (R.N.); (Y.I.); (S.I.); (K.S.)
| | - Rina Niki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan; (A.O.); (R.N.); (Y.I.); (S.I.); (K.S.)
| | - Yutaka Inoue
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan; (A.O.); (R.N.); (Y.I.); (S.I.); (K.S.)
| | - Junki Tomita
- Research Analysis Center, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan;
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan; (A.O.); (R.N.); (Y.I.); (S.I.); (K.S.)
| | - Shoko Itakura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan; (A.O.); (R.N.); (Y.I.); (S.I.); (K.S.)
| | - Kenji Sugibayashi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan; (A.O.); (R.N.); (Y.I.); (S.I.); (K.S.)
| |
Collapse
|
2
|
Lopes KP, Pinheiro DP, Neto JF, Gonçalves TA, Pereira SA, Pessoa C, Vieira IG, Ribeiro MEN, Yeates SG, Ricardo NM. Lapachol-loaded triblock copoly(oxyalkylene)s micelles: Potential use for anticancer treatment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Chen J, Zhu Y, Kaskel S. Porphyrin-Based Metal-Organic Frameworks for Biomedical Applications. Angew Chem Int Ed Engl 2021; 60:5010-5035. [PMID: 31989749 PMCID: PMC7984248 DOI: 10.1002/anie.201909880] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/04/2019] [Indexed: 12/21/2022]
Abstract
Porphyrins and porphyrin derivatives have been widely explored for various applications owing to their excellent photophysical and electrochemical properties. However, inherent shortcomings, such as instability and self-quenching under physiological conditions, limit their biomedical applications. In recent years, metal-organic frameworks (MOFs) have received increasing attention. The construction of porphyrin-based MOFs by introducing porphyrin molecules into MOFs or using porphyrins as organic linkers to form MOFs can combine the unique features of porphyrins and MOFs as well as overcome the limitations of porphyrins. This Review summarizes important synthesis strategies for porphyrin-based MOFs including porphyrin@MOFs, porphyrinic MOFs, and composite porphyrinic MOFs, and highlights recent achievements and progress in the development of porphyrin-based MOFs for biomedical applications in tumor therapy and biosensing. Finally, the challenges and prospects presented by this class of emerging materials for biomedical applications are discussed.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050China
- School of Materials Science and EngineeringUniversity of Shanghai for Science and Technology516 Jungong RoadShanghai200093China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050China
- School of Materials Science and EngineeringUniversity of Shanghai for Science and Technology516 Jungong RoadShanghai200093China
- Hubei Key Laboratory of Processing and Application of Catalytic MaterialsCollege of Chemical EngineeringHuanggang Normal UniversityHuanggangHubei438000China
| | - Stefan Kaskel
- Professur für Anorganische Chemie IFachrichtung Chemie und LebensmittelchemieTechnische Universität DresdenBergstrasse 66Dresden01062Germany
| |
Collapse
|
4
|
da Silva-Junior RC, Campanholi KDSS, de Morais FAP, Pozza MSDS, de Castro-Hoshino LV, Baesso ML, da Silva JB, Bruschi ML, Caetano W. Photothermal Stimuli-Responsive Hydrogel Containing Safranine for Mastitis Treatment in Veterinary Using Phototherapy. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Chen J, Zhu Y, Kaskel S. Porphyrin‐basierte Metall‐organische Gerüste für biomedizinische Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 China
- School of Materials Science and Engineering University of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 China
- School of Materials Science and Engineering University of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials College of Chemical Engineering Huanggang Normal University Huanggang Hubei 438000 China
| | - Stefan Kaskel
- Professur für Anorganische Chemie I Fachrichtung Chemie und Lebensmittelchemie Technische Universität Dresden Bergstraße 66 Dresden 01062 Deutschland
| |
Collapse
|
6
|
Molupe N, Babu B, Oluwole DO, Prinsloo E, Gai L, Shen Z, Mack J, Nyokong T. Photodynamic activity of 2,6-diiodo-3,5-dithienylvinyleneBODIPYs and their folate-functionalized chitosan-coated Pluronic® F-127 micelles on MCF-7 breast cancer cells. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 2,6-diiodo-3,5-dithienylvinyleneBODIPY dye was prepared and encapsulated with folate-chitosan capped Pluronic[Formula: see text] F-127 to provide drug delivery systems for photodynamic therapy (PDT). Moderately enhanced singlet oxygen quantum yields were observed for the dye encapsulation complexes in water. The in vitro dark cytotoxicity and photodynamic activity were investigated on the human breast adenocarcinoma (MCF-7) cell line. Minimal dark cytotoxicity was observed for the BODIPY dyes in 5% DMSO and when encapsulated in folate-functionalized chitosan-coated Pluronic[Formula: see text] F-127 micelles, since the cell viability values are consistently greater than 80% over the 0-40 [Formula: see text] concentration range. Upon irradiation of the samples, significant cytocidal activity was observed for the encapsulation complex of a 2,6-diiodo-8-dimethylaminophenyl-3,5-dithienylvinyleneBODIPY dye with less than 50% viable cells observed at concentrations [Formula: see text].
Collapse
Affiliation(s)
- Nthabeleng Molupe
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - David O. Oluwole
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6140, South Africa
| | - Lizhi Gai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
7
|
Albino de Souza G, de Castro Bezerra F, Martins TD. Photophysical Properties of Fluorescent Self-Assembled Peptide Nanostructures for Singlet Oxygen Generation. ACS OMEGA 2020; 5:8804-8815. [PMID: 32337442 PMCID: PMC7178805 DOI: 10.1021/acsomega.0c00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In this work, a drug delivery system for perillyl alcohol based on the peptide self-assembly containing 3-(2-benzothiazolyl)-7-(diethylamino)coumarin (C6) as a fluorescent additive is obtained, and its photophysical characteristics as well as its release dynamics were studied by steady-state and time-resolved fluorescence spectroscopy. Results proved the dynamics of drug release from the peptide nanostructures and showed that the system formed by the self-assembled peptide and C6, along with perillyl alcohol, presents unique photophysical properties that can be exploited to generate singlet oxygen (1O2) upon irradiation, which is not achieved by the sole components. Through epifluorescence microscopy combined with time-correlated single photon counting fluorescence spectroscopy, the release mechanism was proven to occur upon peptide structure interconversion, which is controlled by environmental changes.
Collapse
Affiliation(s)
- Geovany Albino de Souza
- Chemistry Institute, Federal University of Goiás, Av. Esperança, s/n, Vila Itatiaia, BR 74690900 Goiânia, Goiás, Brazil
| | | | - Tatiana Duque Martins
- Chemistry Institute, Federal University of Goiás, Av. Esperança, s/n, Vila Itatiaia, BR 74690900 Goiânia, Goiás, Brazil
| |
Collapse
|
8
|
Aggarwal A, Samaroo D, Jovanovic IR, Singh S, Tuz MP, Mackiewicz MR. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porphyrin-based molecules are actively studied as dual function theranostics: fluorescence-based imaging for diagnostics and fluorescence-guided therapeutic treatment of cancers. The intrinsic fluorescent and photodynamic properties of the bimodal molecules allows for these theranostic approaches. Several porphyrinoids bearing both hydrophilic and/or hydrophobic units at their periphery have been developed for the aforementioned applications, but better tumor selectivity and high efficacy to destroy tumor cells is always a key setback for their use. Another issue related to their effective clinical use is that, most of these chromophores form aggregates under physiological conditions. Nanomaterials that are known to possess incredible properties that cannot be achieved from their bulk systems can serve as carriers for these chromophores. Porphyrinoids, when conjugated with nanomaterials, can be enabled to perform as multifunctional nanomedicine devices. The integrated properties of these porphyrinoid-nanomaterial conjugated systems make them useful for selective drug delivery, theranostic capabilities, and multimodal bioimaging. This review highlights the use of porphyrins, chlorins, bacteriochlorins, phthalocyanines and naphthalocyanines as well as their multifunctional nanodevices in various biomedical theranostic platforms.
Collapse
Affiliation(s)
- Amit Aggarwal
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Diana Samaroo
- New York City College of Technology, Department of Chemistry, 285 Jay Street, Brooklyn, NY 11201, USA
- Graduate Center, 365 5th Ave, New York, NY 10016, USA
| | | | - Sunaina Singh
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Michelle Paola Tuz
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | | |
Collapse
|
9
|
Sen P, Managa M, Nyokong T. New type of metal-free and Zinc(II), In(III), Ga(III) phthalocyanines carrying biologically active substituents: Synthesis and photophysicochemical properties and photodynamic therapy activity. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Managa M, Ngoy BP, Nyokong T. Photophysical properties and photodynamic therapy activity of ameso-tetra(4-carboxyphenyl)porphyrin tetramethyl ester–graphene quantum dot conjugate. NEW J CHEM 2019. [DOI: 10.1039/c8nj06175k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ameso-tetra(4-carboxyphenyl)porphyrin tetramethyl ester and the Zn and GaCl derivatives were π–π stacked with graphene quantum dots to form conjugates and their photophysical and photodynamic therapy properties were investigated.
Collapse
Affiliation(s)
- Muthumuni Managa
- Centre for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Grahamstown 6140
- South Africa
| | - Bokolombe Pitchou Ngoy
- Centre for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Grahamstown 6140
- South Africa
| | - Tebello Nyokong
- Centre for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Grahamstown 6140
- South Africa
| |
Collapse
|
11
|
Molupe N, Babu B, Oluwole DO, Prinsloo E, Mack J, Nyokong T. The investigation of in vitro dark cytotoxicity and photodynamic therapy effect of a 2,6-dibromo-3,5-distyryl BODIPY dye encapsulated in Pluronic® F-127 micelles. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1522536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nthabeleng Molupe
- aCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Balaji Babu
- aCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - David O. Oluwole
- aCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Earl Prinsloo
- bBiotechnology Innovation Centre, Rhodes University, Makhanda, South Africa
| | - John Mack
- aCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- aCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| |
Collapse
|