1
|
El Faydy M, Lakhrissi L, Dahaieh N, Ounine K, Tüzün B, Chahboun N, Boshaala A, AlObaid A, Warad I, Lakhrissi B, Zarrouk A. Synthesis, Biological Properties, and Molecular Docking Study of Novel 1,2,3-Triazole-8-quinolinol Hybrids. ACS OMEGA 2024; 9:25395-25409. [PMID: 38882066 PMCID: PMC11170742 DOI: 10.1021/acsomega.4c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
A new series of 1,2,3-triazole-8-quinolinol hybrids were synthesized in good yields using monosubstituted acetonitriles and 5-azidomethyl-8-quinolinol as the starting reagents via a one-step protocol. The structures of 1,2,3-triazole-8-quinolinol hybrids were characterized by nuclear magnetic resonance (1H and 13C NMR) spectroscopy and elemental analysis. Antibacterial activity in vitro of all the synthesized hybrids was investigated against Escherichia coli (E. coli), Xanthomonas fragariae (X. fragariae), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) applying the methods of disk diffusion and minimal inhibition concentration (MIC). Hybrid 7 exhibited excellent antibacterial capacity, with an MIC value of 10 μg/mL against S. aureus and 20 μg/mL against B. subtilis, E. coli, and X. fragariae, which were comparable to those that of the standard antibiotic nitroxoline. A structure-activity relationship (SAR) study of 1,2,3-triazole-8-quinolinol hybrids showed that introducing electron-donating substituents in the 1,2,3-triazole ring at the 4-position is important for activity. Quantum chemical calculations have been undertaken to employ the Gaussian software in the B3LYP, HF, and M062X basis sets using 3-21g, 6-31g, and SDD levels to further explain linkages within the antibacterial findings. Furthermore, molecular docking investigations were also conducted to investigate the binding affinities as well as the interactions of some hybrids with the target proteins. An absorption, distribution, metabolism, excretion, and toxicity (ADME/T) investigation was carried out to scrutinize the viability of employing the 1,2,3-triazole-8-quinolinol hybrids as medicines.
Collapse
Affiliation(s)
- Mohamed El Faydy
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
| | - Loubna Lakhrissi
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, PO Box 1014 Agdal, Rabat 10500, Morocco
| | - Naoufel Dahaieh
- Laboratory of Nutrition, Health, and Environment, Department of Biology, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, Kenitra 14000, Morocco
| | - Khadija Ounine
- Laboratory of Nutrition, Health, and Environment, Department of Biology, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, Kenitra 14000, Morocco
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Nabila Chahboun
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, Ibn Tofail University, PO Box 242, Kenitra 14000, Morocco
- Institute of Nursing Professions and Health Techniques, Annex, Kenitra 14000, Morocco
- Laboratory of Materials, Nanotechnology, and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta PO Box 1014 Agdal, Rabat 10500, Morocco
| | - Ahmed Boshaala
- Libyan Authority for Scientific Research, P O Box 80045, Tripoli Libya
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
| | - Abeer AlObaid
- Department of Chemistry, College of Science, King Saud University, P O Box 2455, Riyadh 11451, Saudi Arabia
| | - Ismail Warad
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
- Department of Chemistry, AN-Najah National University, PO Box 7, Nablus 00970, Palestine
| | - Brahim Lakhrissi
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
| | - Abdelkader Zarrouk
- Laboratory of Materials, Nanotechnology, and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta PO Box 1014 Agdal, Rabat 10500, Morocco
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
| |
Collapse
|
2
|
Yalazan H, Koç D, Aydın Kose F, Fandaklı S, Tüzün B, Akgül Mİ, Sadeghian N, Taslimi P, Kantekin H. Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds. J Biomol Struct Dyn 2023; 42:13100-13113. [PMID: 37921706 DOI: 10.1080/07391102.2023.2274972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
In this study, new Schiff base compounds (SB-F-OH, SB-Cl-OH and SB-Br-OH) were derived from chalcone-derived amine compounds containing halogen groups and 4-hydroxybenzaldehyde. Also, their phthalonitrile compounds (SB-F-CN, SB-Cl-CN and SB-Br-CN) have been synthesized. The structures of these compounds were elucidated by NMR, FT-IR and Mass spectroscopic methods. The quantum chemical parameters were calculated at B3LYP/6-31++g(d,p), HF/6-31++g(d,p) and M062X/6-31++g(d,p) levels. As the biological application of the synthesized compounds, (i) their inhibition properties of the synthesized compounds on Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) metabolic enzymes were investigated, and their potential anticancer activities against neuroblastoma (NB; SH-SY5Y) and healthy fibroblast (NIH-3T3) cell lines were determined by in vitro assays. All compounds showed inhibition at nanomolar level with the Ki values in the range of 97.86 ± 30.51-516.82 ± 31.42 nM for AChE, 33.21 ± 4.45-78.50 ± 8.91 nM for BChE, respectively. It has been determined that all tested compounds have a remarkable cytotoxic effect against SH-SY5Y, and IC50 values were significantly lower than NIH-3T3 cells. The lowest IC50 value was observed in SB-Cl-OH (7.48 ± 0.86 µM) and SB-Cl-CN (7.31 ± 0.69 µM). The molecular docking of the molecules was also investigated using crystal structure of AChE enzyme protein (PDB ID: 4M0E), crystal structure of BChE protein (PDB ID: 6R6V) and SH-SY5Y cancer protein (PDB ID: 2F3F, 3PBL and 5WIV). The ADME properties of the compounds were investigated. MM/GBSA method is calculated binding free energy. Afterwards, ADME/T analysis was performed to examine the some properties of the molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Halise Yalazan
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Damla Koç
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
| | - Fadime Aydın Kose
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Seda Fandaklı
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Muhammed İsmail Akgül
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Halit Kantekin
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
3
|
FARAJZADEH N, YENİLMEZ HY, YAŞA ATMACA G, ERDOĞMUŞ A, ALTUNTAŞ BAYIR Z. Sonophotochemical and photochemical efficiency of thiazole-containing metal phthalocyanines and their gold nanoconjugates. Turk J Chem 2023; 47:1085-1102. [PMID: 38173750 PMCID: PMC10760820 DOI: 10.55730/1300-0527.3596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
This study presents the synthesis of some metal {M = Zn(II), Lu(III), Si(IV)} phthalocyanines bearing chlorine and 2-(4-methylthiazol-5-yl) ethoxy groups at peripheral or axial positions. The newly synthesized metal phthalocyanines were characterized by applying FT-IR, 1H NMR, mass, and UV-Vis spectroscopic approaches. Additionally, the surface of gold nanoparticles was modified with zinc(II) and silicon(IV) phthalocyanines. The resultant nanoconjugates were characterized using TEM images. Moreover, the effect of metal ions and position of substituent, and gold nanoparticles on the photochemical and sonophotochemical properties of the studied phthalocyanines was investigated. The highest singlet oxygen quantum yield was obtained for the lutetium phthalocyanine by applying photochemical and sonophotochemical methods. However, the linkage of the zinc(II) and silicon(IV) phthalocyanines to the surface of gold nanoparticles improved significantly their singlet oxygen generation capacities.
Collapse
Affiliation(s)
- Nazli FARAJZADEH
- Department of Chemistry, İstanbul Technical University, Maslak, İstanbul,
Turkiye
| | | | - Göknur YAŞA ATMACA
- Department of Chemistry, Yıldız Technical University, Esenler, İstanbul,
Turkiye
| | - Ali ERDOĞMUŞ
- Department of Chemistry, Yıldız Technical University, Esenler, İstanbul,
Turkiye
| | - Zehra ALTUNTAŞ BAYIR
- Department of Chemistry, İstanbul Technical University, Maslak, İstanbul,
Turkiye
| |
Collapse
|
4
|
Yalazan H, Ömeroğlu İ, Çelik G, Kantekin H, Durmuş M. Fluorinated pyrazoline-linked axial silicon phthalocyanine, alpha (α) and beta (β) zinc phthalocyanines on photophysicochemical properties. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Synthesis, Spectroscopic Characterization, Antibacterial Activity, and Computational Studies of Novel Pyridazinone Derivatives. Molecules 2023; 28:molecules28020678. [PMID: 36677736 PMCID: PMC9861222 DOI: 10.3390/molecules28020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In this work, a novel series of pyridazinone derivatives (3-17) were synthesized and characterized by NMR (1H and 13C), FT-IR spectroscopies, and ESI-MS methods. All synthesized compounds were screened for their antibacterial activities against Staphylococcus aureus (Methicillin-resistant), Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Acinetobacter baumannii. Among the series, compounds 7 and 13 were found to be active against S. aureus (MRSA), P. aeruginosa, and A. baumannii with the lowest MIC value range of 3.74-8.92 µM. Afterwards, DFT calculations of B3LYP/6-31++G(d,p) level were carried out to investigate geometry structures, frontier molecular orbital, molecular electrostatic potential maps, and gap energies of the synthesized compounds. In addition, the activities of these compounds against various bacterial proteins were compared with molecular-docking calculations. Finally, ADMET studies were performed to investigate the possibility of using of the target compounds as drugs.
Collapse
|
6
|
Yalazan H, Kantekin H, Durmuş M. Peripherally, non-peripherally and axially pyrazoline-fused phthalocyanines: synthesis, aggregation behaviour, fluorescence, singlet oxygen generation, and photodegradation studies. NEW J CHEM 2023. [DOI: 10.1039/d3nj00355h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Pyrazoline-fused peripheral zinc phthalocyanine (HY-ZnPcP) showed the highest singlet oxygen generation in DMSO, and it is thought to be a photosensitizer candidate for photodynamic therapy.
Collapse
Affiliation(s)
- Halise Yalazan
- Karadeniz Technical University, Department of Chemistry, Faculty of Sciences, Trabzon, Türkiye
| | - Halit Kantekin
- Karadeniz Technical University, Department of Chemistry, Faculty of Sciences, Trabzon, Türkiye
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, Gebze, 41400, Kocaeli, Türkiye
| |
Collapse
|
7
|
Ünlü S, Elmalı FT, Atmaca GY, Erdoğmuş A. Synthesis of axially Schiff base new substituted silicon phthalocyanines and investigation of photochemical and sono-photochemical properties. Photodiagnosis Photodyn Ther 2022; 40:103192. [PMID: 36336321 DOI: 10.1016/j.pdpdt.2022.103192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Sono-photodynamic therapy, which show a very high therapeutic effect compared to photodynamic therapy, is a newer method for anticancer treatments. However, unlike Photodynamic therapy (PDT), the number of studies measuring the efficiency of singlet oxygen for the Sono-photodynamic therapy (SPDT) method is quite insufficient in the literature. Therefore, this study aimed to synthesis novel axially substituted silicon (IV) phthalocyanines containing imine groups with improved photochemical properties and then reported the efficiency of singlet oxygen by both of photochemical and sono-photochemical studies. According to the results, the substituent group increased the singlet oxygen yield of silicon (IV) phthalocyanine dichloride and the sono-photochemical effect increased the singlet oxygen yields (ΦΔ=0.35 for 2a, 0.69 for 2b in photochemical study, 0.78 for 2a, 0.97 for 2b in sono-photochemical study).This article may pave the way to achieve high singlet oxygen efficiency.
Collapse
Affiliation(s)
- Seda Ünlü
- Department of Chemistry, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Fikriye Tuncel Elmalı
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey.
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey
| |
Collapse
|
8
|
Kökbudak Z, Akkoç S, Karataş H, Tüzün B, Aslan G. In Silico
and
In Vitro
Antiproliferative Activity Assessment of New Schiff Bases. ChemistrySelect 2022. [DOI: 10.1002/slct.202103679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Senem Akkoç
- Department of Basic Pharmaceutical Science Suleyman Demirel University Isparta Turkey
| | - Halis Karataş
- Department of Chemistry Erciyes University Kayseri Turkey
| | - Burak Tüzün
- Plant and Animal Production Department Sivas Cumhuriyet University Sivas Turkey
| | - Güzin Aslan
- Department of Chemistry Erciyes University Kayseri Turkey
| |
Collapse
|
9
|
Khalilov AN, Tüzün B, Taslimi P, Tas A, Tuncbilek Z, Cakmak NK. Cytotoxic effect, spectroscopy, DFT, enzyme inhibition, and moleculer docking studies of some novel mesitylaminopropanols: Antidiabetic and anticholinergics and anticancer potentials. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Koçyiğit ÜM, Taslimi P, Tüzün B, Yakan H, Muğlu H, Güzel E. 1,2,3-Triazole substituted phthalocyanine metal complexes as potential inhibitors for anticholinesterase and antidiabetic enzymes with molecular docking studies. J Biomol Struct Dyn 2020; 40:4429-4439. [DOI: 10.1080/07391102.2020.1857842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ümit M. Koçyiğit
- Department of Basic Pharmaceutical Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartin, Turkey
| | - Burak Tüzün
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hasan Yakan
- Department of Chemistry Education, Ondokuz Mayıs University, Samsun, Turkey
| | - Halit Muğlu
- Department of Chemistry, Kastamonu University, Kastamonu, Turkey
| | - Emre Güzel
- Department of Fundamental Sciences, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey
| |
Collapse
|
11
|
Genc Bilgicli H, Ergon D, Taslimi P, Tüzün B, Akyazı Kuru İ, Zengin M, Gülçin İ. Novel propanolamine derivatives attached to 2-metoxifenol moiety: Synthesis, characterization, biological properties, and molecular docking studies. Bioorg Chem 2020; 101:103969. [DOI: 10.1016/j.bioorg.2020.103969] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
|
12
|
Synthesis, characterization, photo-physicochemical and biological properties of water-soluble tetra-substituted phthalocyanines: Antidiabetic, anticancer and anticholinergic potentials. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112511] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Genç Bilgiçli H, Bilgiçli AT, Günsel A, Tüzün B, Ergön D, Yarasir MN, Zengin M. Turn‐on fluorescent probe for Zn
2+
ions based on thiazolidine derivative. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | - Armağan Günsel
- Department of ChemistrySakarya University 54050 Sakarya Turkey
| | - Burak Tüzün
- Department of ChemistryCumhuriyet University Sivas Turkey
| | - Derya Ergön
- Department of ChemistrySakarya University 54050 Sakarya Turkey
| | | | - Mustafa Zengin
- Department of ChemistrySakarya University 54050 Sakarya Turkey
| |
Collapse
|
14
|
Sağlam Ö, Akin M, Pekbelgin Karaoğlu H, Saki N, Koçak MB. Investigation of Time‐Kill Evaluation and Antioxidant Activities of New Tetra‐Substituted Metallophthalocyanines Bearing 4‐(Trifluoromethoxy)thiophenyl Groups. ChemistrySelect 2020. [DOI: 10.1002/slct.201904636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Özgül Sağlam
- Department of Chemistry Istanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Mustafa Akin
- Department of Chemistry Kocaeli University 41380 Kocaeli Turkey
| | | | - Neslihan Saki
- Department of Chemistry Kocaeli University 41380 Kocaeli Turkey
| | - Makbule Burkut Koçak
- Department of Chemistry Istanbul Technical University 34469 Maslak, Istanbul Turkey
| |
Collapse
|
15
|
Tüzün B. Investi̇gati̇on of pyrazoly derivatives schi̇ff base li̇gands and thei̇r metal complexes used as anti-cancer drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117663. [PMID: 31655391 DOI: 10.1016/j.saa.2019.117663] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
In this study, six pyrazole derivatives containing hetero atoms have been analyzed using theoretical calculation method. The ligands were tested by HF, B3LYP and M06-2X methods using 3-21G, 6-31G, 6-31G(d, p), and sdd basis sets. The results showed that Ligand 5 has a HOMO value of -7.470 at HF / 6-31g (d.p) level. These ligands were investigated in IR, NMR, and UV-VIS spectrum, then experimental values were compared with IR and NMR spectrum data. The solvents, whose effects were investigated in UV-VIS spectrum, were gas phase (ε = 1), toluene (ε = 2.3741), chloroform (ε = 4.7113), methanol (ε = 32.613), water (ε = 78.3553), and n-methylformamide-mixture (ε = 181.56). Metal complexes of tested ligands were produced with copper, nickel, and zinc. Lastly, the interactions between these six pyrazole derivatives and three proteins, namely 3dju, 2IJN, and 1JNX, were also examined. Biological and anti-cancer properties of six pyrazole derivatives were analyzed by DockingServer. In docking calculations, Estimated Free Energy of Binding value of Ligand 5 was found to be -4.87, -4.82, -1.73 respectively, which indicated the highest biological activity.
Collapse
Affiliation(s)
- Burak Tüzün
- Sivas Cumhuriyet University, Faculty of Science, Chemistry Department, SİVAS, Turkey.
| |
Collapse
|
16
|
Investigation of photophysical and photochemical properties of phthalocyanines bearing fluorinated groups. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-019-02543-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Yakan H, Çavuş MS, Güzel E, Arslan BS, Bakır T, Muğlu H. Phthalocyanines including 2-mercaptobenzimidazole analogs: Synthesis, spectroscopic characteristics, quantum-chemical studies on the relationship between electronic and antioxidant properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Bilgiçli AT, Genç Bilgiçli H, Günsel A, Pişkin H, Tüzün B, Nilüfer Yarasir M, Zengin M. The new ball-type zinc phthalocyanine with S S bridge; Synthesis, computational and photophysicochemical properties. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Günsel A, Kobyaoğlu A, Bilgiçli AT, Tüzün B, Tosun B, Arabaci G, Yarasir MN. Novel biologically active metallophthalocyanines as promising antioxidant-antibacterial agents: Synthesis, characterization and computational properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Günsel A, Bilgiçli AT, Tüzün B, Pişkin H, Yarasir MN, Gündüz B. Optoelectronic parameters of peripherally tetra-substituted copper(ii) phthalocyanines and fabrication of a photoconductive diode for various conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05287a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, the molecular structure of 4-(4-(trifluoromethoxy)phenoxy)phthalonitrile (1) has been elucidated and its supra-molecular dynamics have been revealed by the analysis of single crystal X-ray diffraction measurements.
Collapse
Affiliation(s)
- Armağan Günsel
- Department of Chemistry
- Sakarya University
- 54187 Esentepe
- Turkey
| | | | - Burak Tüzün
- Department of Chemistry
- Cumhuriyet University
- 58140 Sivas
- Turkey
| | - Hasan Pişkin
- Department of Physics
- Gebze Technical University
- 41400 Gebze
- Turkey
| | | | - Bayram Gündüz
- Department of Science Education
- Faculty of Education
- Muş Alparslan University
- 49250 Muş
- Turkey
| |
Collapse
|
21
|
Kuznetsov AE. Phthalocyanines core-modified by P and S and their complexes with fullerene C60: DFT study. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2019-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Phthalocyanines (Pcs) and their derivatives have attracted a lot of attention because of their both biological importance and technological applications. The properties of Pcs can be tuned by replacing the central atom, by modifying the periphery of phthalocyanine ring, and by changing the meso-atoms. One more promising pathway for modifying Pcs and their derivatives can be the core-modification, or substitution of the core isoindole nitrogen(s) by other elements. Motivated by the results obtained for some core-modified porphyrins, we investigated computationally complete core-modification of regular Zn phthalocyanine (ZnPc) with P and S. We performed density functional theory studies of the structures, charges, and frontier molecular orbitals of P-core-modified and S-core-modified ZnPcs, ZnPc(P)4 and ZnPc(S)4, using both B3LYP and two dispersion-corrected functionals. Also, we studied computationally formation of complexes between the fullerene C60 and ZnPc(P)4 and ZnPc(S)4. Both ZnPc(P)4 and ZnPc(S)4 show strong bowl-like distortions similar to the results obtained earlier for ZnP(P)4 and ZnP(S)4. The size of the “bowl” cavity of the both core-modified Pcs is essentially the same, showing no dependence on the core-modifying element. For ZnPc(S)4, the HOMO is quite different from those of ZnPc and ZnPc(P)4. When the fullerene C60 forms complexes with the ZnPc(P)4 and ZnPc(S)4 species in the gas phase, it is located relatively far (4.30–5.72 Å) from the one of the P-centers and from the Zn-center of ZnPc(P)4, whereas with ZnPc(S)4 C60 forms relatively short bonds with the Zn-center, varying from ca. 2.0 to ca. 3.0 Å. The very strong deformations of both the ZnPc(P)4 and ZnPc(S)4 structures are observed. The calculated binding energy at the B3LYP/6-31G* level for the C60-ZnPc(P)4 complex is quite low, 1.2 kcal/mol, which agrees with the quite long distances fullerene - ZnPc(P)4, whereas it is noticeably larger, 13.6 kcal/mol, for the C60-ZnPc(S)4 complex which again agrees with the structural features of this complex. The binding energies of the complexes optimized using the dispersion-corrected functionals, CAM-B3LYP and wB97XD, are significantly larger, varying from ca. 14 till 52 kcal/mol which corresponds with the shorter distances between the fullerene and ZnPc(X)4 species.
Collapse
|
22
|
|
23
|
Comparison of spectroscopic, electronic, theoretical, optical and surface morphological properties of functional manganese(III) phthalocyanine compounds for various conditions. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Yalazan H, Barut B, Sarkı G, Ertem B, Ünver Y, Özel A, Kantekin H. Syntheses, structural characterization, DNA-cleavage and antioxidant features of the new tetra-substituted organo-soluble non-peripherally CoII, CuII, ZnII and MgII phthalocyanines. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1648795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Halise Yalazan
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Gülpınar Sarkı
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Beytullah Ertem
- Vocational School of Health Services, Karadeniz Technical University, Trabzon, Turkey
| | - Yasemin Ünver
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Arzu Özel
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
- Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Halit Kantekin
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
25
|
Günsel A, Bilgiçli AT, Pişkin H, Tüzün B, Yarasir MN, Gündüz B. Synthesis of non-peripherally tetra-substituted copper(ii) phthalocyanines: characterization, optical and surface properties, fabrication and photo-electrical properties of a photosensitive diode. Dalton Trans 2019; 48:14839-14852. [DOI: 10.1039/c9dt02868d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study describes the synthesis and characterization of a non-peripherally tetra-substituted copper(ii) phthalocyanine bearing 4-(trifluoromethoxy)phenol groups.
Collapse
Affiliation(s)
- Armağan Günsel
- Department of Chemistry
- Sakarya University
- 54187 Esentepe
- Turkey
| | | | - Hasan Pişkin
- Department of Physics
- Gebze Technical University
- 41400 Gebze
- Turkey
| | - Burak Tüzün
- Department of Chemistry
- Cumhuriyet University
- 58140 Sivas
- Turkey
| | | | - Bayram Gündüz
- Department of Science Education
- Faculty of Education
- Muş Alparslan University
- 49250 Muş
- Turkey
| |
Collapse
|