1
|
Nair Y, Joy F, Vinod TP, Vineetha MC, Kurup MRP, Kaya S, Serdaroğlu G, Erkan S. Spectroscopic, crystal structure and DFT-assisted studies of some nickel(II) chelates of a heterocyclic-based NNO donor aroylhydrazone: in vitro DNA binding and docking studies. Mol Divers 2024; 28:509-530. [PMID: 36656464 DOI: 10.1007/s11030-023-10599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
Five new nickel(II) complexes have been synthesised with an NNO donor tridentate aroylhydrazone (HFPB) employing the chloride, nitrate, acetate and perchlorate salts, and all the complexes are physiochemically characterized. Elemental analyses suggested stoichiometries as Ni(FPB)(NO3)]·2H2O (1), [Ni(HFPB)(FPB)]Cl (2), [Ni(FPB)(OAc)(DMF)] (3), [Ni(FPB)(ClO4)]·DMF (4), [Ni(FPB)2] (5). Aroylhydrazone is found coordinating in deprotonated iminolate form in four of the complexes (1, 3, 4, 5) however in one case (complex 2), two aroylhydrazone moieties are binding to the metal centre in the neutral and anionic forms. The structure of the bisligated complex 5, found using single crystal X ray diffraction studies confirmed that the metal has a distorted octahedral N4O2 coordination environment, with each of the two deprotonated ligands coordinating through the pyridine nitrogen, imino-hydrazone nitrogen and the enolate oxygen of the hydrazone moiety. To compare and study, the electronic interactions and stabilities of the metal complexes, various quantum chemical parameters were calculated. Moreover, Hirshfeld surface analysis was carried out for complex 5 to determine the intermolecular interactions. The biophysical attributes of the ligand and complex 5 have been investigated with CT-DNA and experimental outcomes show that the Ni(II) complex exhibited higher binding propensity towards DNA as compared to ligand. Furthermore, to specifically understand the type of interactions of the metal complexes with DNA, molecular docking studies were effectuated. In addition, the electronic and related reactivity behaviors of the ligand and five Ni(II) complexes were studied using B3LYP/6-31 + + G**/LANL2DZ level. As expected, the obtained results from Natural Bond Orbital (NBO) computations displayed that the resonance interactions (n → π* and π → π*) play a determinant role in evaluating the chemical attributes of the reported compounds.
Collapse
Affiliation(s)
- Yamuna Nair
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560 029, India
| | - Francis Joy
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560 029, India
| | - T P Vinod
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560 029, India
| | - M C Vineetha
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, 682 022, India
- Department of Chemistry, Sree Kerala Varma College, Thrissur, Kerala, 680 011, India
| | - M R Prathapachandra Kurup
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, 682 022, India.
| | - Savaş Kaya
- Department of Pharmacy, Health Services Vocational School, Sivas Cumhuriyet University, Sivas, 58140, Turkey
| | - Goncagül Serdaroğlu
- Faculty of Education, Math. and Sci. Edu., Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Sultan Erkan
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, 58010, Sivas, Turkey
| |
Collapse
|
2
|
Khalil A, Adam MSS. Bimetallic bis-Aroyldihydrazone-Isatin Complexes of High O=V(IV) and Low Cu(II) Valent Ions as Effective Biological Reagents for Antimicrobial and Anticancer Assays. Molecules 2024; 29:414. [PMID: 38257327 PMCID: PMC10820496 DOI: 10.3390/molecules29020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Due to the versatile bioreactivity of aroyldihydrazone complexes as cost-effective alternatives with different transition metals, two novel bimetallic homo-complexes (VOLph and CuLph) were prepared via the coordination of a terephthalic dihydrazone diisatin ligand (H2Lph) with VO2+ and Cu2+ ions, respectively. The structure elucidation was confirmed by alternative spectral methods. Biologically, the H2Lph ligand and its MLph complexes (M2+ = VO2+ or Cu2+) were investigated as antimicrobial and anticancer agents. Their biochemical activities towards ctDNA (calf thymus DNA) were estimated using measurable titration viscometrically and spectrophotometrically, as well as the gel electrophoresis technique. The growth inhibition of both VOLph and CuLph complexes against microbial and cancer cells was measured, and the inhibition action, MIC, and IC50 were compared to the inhibition action of the free H2Lph ligand. Both VOLph and CuLph showed remarkable interactive binding with ctDNA compared to the free ligand H2Lph, based on Kb = 16.31, 16.04 and 12.41 × 107 mol-1 dm3 and ΔGb≠ = 47.11, -46.89, and -44.05 kJ mol-1 for VOLph, CuLph, and H2Lph, respectively, due to the central metal ion (VIVO and CuII ions). VOLph (with a higher oxidation state of the V4+ ion and oxo-ligand) exhibited enhanced interaction with the ctDNA molecule compared to CuLph, demonstrating the role and type of the central metal ion within the performed electronegative and electrophilic characters.
Collapse
Affiliation(s)
- Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Shaker S. Adam
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
| |
Collapse
|
3
|
Adam MSS, Khalil A. Bioreactivity of divalent bimetallic vanadyl and zinc complexes bis-oxalyldihydrazone ligand against microbial and human cancer series. ctDNA interaction mode. Int J Biol Macromol 2023; 249:125917. [PMID: 37524289 DOI: 10.1016/j.ijbiomac.2023.125917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Two novel divalent bimetallic complexes were constructed from the complexation of O=V4+ and Zn2+ ions (VOL and ZnL), respectively, with diisatin oxalyldihydrazone ligand (H2L). Various spectroscopic tools were used to confirm their chemical structures (FT-IR, NMR, EI-Mass, and electronic spectra), besides, elemental analyses and conductivity features. To estimate the role of divalent metal ions in their coordination compound for developing their bio-reactivity, the free ligand H2Lox, and its complexes (VOL and ZnL) were employed spectroscopic investigations against the growth of some microbial series (fungi and bacteria) and also against three human cancer/normal cells. Furthermore, their interaction behavior against calf thymus DNA (ctDNA) was studied through viscometric and spectrophotometric studies to discover the role of O=V4+ and Zn2+ ions to determine the mode of binding with ctDNA. The inhibiting effect of H2L, VOL, and ZnL versus the titled microbial (bacterial and fungal) was built upon their inhibited zone areas in mm and the MIC concentrations in μM. Their action against the three human cancer cells' growth was evaluated by IC50 values in μM and the selectivity index in percentage. Both VOL and ZnL complexes exhibited an amazing series with three human cancer cell growth (according to the zone values in mm of inhibition, MIC in μM, and IC50 values in μM) compared to those of their uncoordinated H2L ligand. VOL demonstrated a distinguished interacting behavior with ctDNA more than that interaction of ZnL depending on the variation of the central metal ion chemical features. Within the covalent and non-covalent interaction modes, the interaction binding between H2L, VOL, and ZnL with ctDNA was discussed based on the electronic spectroscopic observation.
Collapse
Affiliation(s)
- Mohamed Shaker S Adam
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt.
| | - Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Comprehensive catalytic and biological studies on new designed oxo- and dioxo-metal (IV/VI) organic arylhydrazone frameworks. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Sergienko VS, Abramenko VL, Churakov AV, Surashskaya MD. Synthesis and Structure of Dioxomolibdenum(VI) Complexes with Hydrazones of β-Dicarbonyl Compounds. Crystal Structures of Benzoylacetone Nicotinoylhydrazone (H2L1), Acetoacetanilide Benzoylhydrazone (H2L2), and MoO2L1·MeOH Solvate. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222060147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Adam MSS, Shaaban S, El‐Metwaly NM. Two ionic oxo‐vanadate and dioxo‐molybdate complexes of dinitro‐aroylhydazone derivative: effective catalysts towards epoxidation reactions, biological activity,
ct
DNA binding, DFT and
silico
investigations. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Saad Shaaban
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
- Department of Chemistry, Faculty of Applied Science Umm Al Qura University Makkah Saudi Arabia
| |
Collapse
|
7
|
Sergienko VS, Abramenko VL, Surazhskaya MD. Complexes of Dioxomolybdenum(VI) with Acylhydrazones. Crystal Structures of Nicotinoylhydrazone 5-Nitrosalicylic Aldehyde (H2L) and Solvate Complex МоО2(L)·Me2SO. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622050151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Effect of oxy-vanadium (IV) and oxy-zirconium (IV) ions in O,N-bidentate arylhydrazone complexes on their catalytic and biological potentials that supported via computerized usages. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Sergienko VS, Abramenko VL, Churakov AV, Surazhskaya MD. Synthesis and Structures of Dioxomolybdenum(VI) Complexes with Hydrazones of β-Dicarbonic Compounds. Crystal Structures of Solvate Complexes МоО2L1⋅МеОН (H2L1 = Isonicotinoylhydrazone Acetylacetone) and МоО2L2 ⋅Me2SO (H2L2 = Benzoylhydrazone Benzoylacetone). RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621120159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
M. C. V, Joy F, Krishna P. M, T. P. V, Venkataraman SK, Agarwal AK, Nair Y, Kurup MRP. Novel dioxidomolybdenum complexes containing ONO chelators: Synthesis, physicochemical properties, crystal structures, Hirshfeld surface analysis, DNA binding/cleavage studies, docking, and in vitro cytotoxicity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vineetha M. C.
- Department of Applied Chemistry Cochin University of Science and Technology Kochi India
- Department of Chemistry Sree Kerala Varma College Thrissur India
| | - Francis Joy
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India
| | - Murali Krishna P.
- Department of Chemistry Ramaiah Institute of Technology Bengaluru India
| | - Vinod T. P.
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India
| | | | - Anil K. Agarwal
- Discovery Chemistry Syngene International Limited Bengaluru India
| | - Yamuna Nair
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India
| | - M. R. Prathapachandra Kurup
- Department of Applied Chemistry Cochin University of Science and Technology Kochi India
- Department of Chemistry, School of Physical Sciences Central University of Kerala Periye, Kasaragod India
| |
Collapse
|
11
|
Adam MSS, Makhlouf M, Ullah F, El-Hady OM. Mononucleating nicotinohydazone complexes with VO2+, Cu2+, and Ni2+ ions. Characteristic, catalytic, and biological assessments. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Wang Q, Xiong ZD, Liu L, Cai YJ. Syntheses, X-ray crystal structures and catalytic epoxidation of oxidovanadium(V) and dioxidomolybdenum(VI) complexes derived from N′-(4-Bromo-2-hydroxybenzylidene)benzohydrazide. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1749658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qian Wang
- Institute of Technology, Wuhan Textile University, Wuhan, People’s Republic of China
| | - Zhong-Duo Xiong
- Institute of Technology, Wuhan Textile University, Wuhan, People’s Republic of China
| | - Liu Liu
- Institute of Technology, Wuhan Textile University, Wuhan, People’s Republic of China
| | - Ya-Jun Cai
- Institute of Technology, Wuhan Textile University, Wuhan, People’s Republic of China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, People’s Republic of China
| |
Collapse
|
13
|
Spectral studies and crystal structures of molybdenum(VI) complexes containing pyridine or picoline as auxiliary ligands: interaction energy calculations and free radical scavenging studies. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00440-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Kuriakose D, Kurup MP. Synthesis, spectral, structural and antibacterial studies of ONO donor aroylhydrazone and its Mo(VI) complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Asha T, Prathapachandra Kurup M. An insight into the potent antioxidant activity of a dithiocarbohydrazone appended
cis
‐dioxidomolybdenum (VI) complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- T.M. Asha
- Department of Applied ChemistryCochin University of Science and Technology Kochi Kerala 682 022 India
| | - M.R. Prathapachandra Kurup
- Department of Applied ChemistryCochin University of Science and Technology Kochi Kerala 682 022 India
- Department of Chemistry, School of Physical SciencesCentral University of Kerala Tejaswini Hills, Periye Kasargode Kerala 671 320 India
| |
Collapse
|
16
|
Synthesis and characterization of homobimetallic molybdenum(VI) complexes of a dihydrazone as efficient catalysts for the synthesis of hexahydroxyquinolines via multicomponent Hantzsch reaction. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kuriakose D, Kurup MP. Mononuclear and binuclear dioxidomolybdenum(VI) complexes of ONO appended aroylhydrazone: Crystal structures, interaction energy calculation and cytotoxicity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Cu(II) and Zn(II) complexes from a thiosemicarbazone derivative: Investigating the intermolecular interactions, crystal structures and cytotoxicity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Asha TM, Shiju E, Keloth C, Kurup MP. A Schiff base colorimetric chemosensor for CN
‐
ion and its dioxidomolybdenum (VI) complexes: Evaluation of structural aspects and optoelectronic properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- T. M. Asha
- Department of Applied ChemistryCochin University of Science and Technology Kochi 682 022 Kerala India
| | - E Shiju
- Laser and Nonlinear Optics Laboratory, Department of PhysicsNational Institute of Technology Calicut 673 601 India
| | - Chandrasekharan Keloth
- Laser and Nonlinear Optics Laboratory, Department of PhysicsNational Institute of Technology Calicut 673 601 India
| | - M.R. Prathapachandra Kurup
- Department of Applied ChemistryCochin University of Science and Technology Kochi 682 022 Kerala India
- Department of ChemistrySchool of Physical Sciences, Central University of Kerala Tejaswini Hills, Periye Kasaragod 671 320 India
| |
Collapse
|
20
|
Asha T, Sithambaresan M, Prathapachandra Kurup M. Dioxidomolybdenum(VI) complexes chelated with N4-(3-methoxyphenyl)thiosemicarbazone as molybdenum(IV) precursors in oxygen atom transfer process and oxidation of styrene. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|