1
|
Bayout A, Cammarano C, Costa IM, Veryasov G, Hulea V. Management of methyl mercaptan contained in waste gases - an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44669-44690. [PMID: 38963632 DOI: 10.1007/s11356-024-34112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Methyl mercaptan is a typical volatile organosulfur pollutant contained in many gases emitted by urban waste treatment, various industries, natural gas handling, refining processes, and energy production. This work is a comprehensive overview of the scientific and practical aspects related to the management of methyl mercaptan pollution. The main techniques, including absorption, adsorption, oxidation, and biological treatments, are examined in detail. For each method, its capability as well as the technical advantages and drawbacks have been highlighted. The emerging methods developed for the removal of methyl mercaptan from natural gas are also reviewed. These methods are based on the catalytic conversion of CH3SH to hydrocarbons and H2S.
Collapse
Affiliation(s)
- Abdelilah Bayout
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Claudia Cammarano
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Izabel Medeiros Costa
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Gleb Veryasov
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Vasile Hulea
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France.
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium.
| |
Collapse
|
2
|
Bayati B, Keshavarz F, Rezaei N, Zendehboudi S, Barbiellini B. New insight into impact of humidity on direct air capture performance by SIFSIX-3-Cu MOF. Phys Chem Chem Phys 2024; 26:17645-17659. [PMID: 38864747 DOI: 10.1039/d4cp00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Removal of CO2 from air is one of the key human challenges in battling global warming. SIFSIX-3-Cu is a promising metal-organic framework (MOF) suggested for carbon capture even at low CO2 concentrations. However, the impact of humidity on its performance in direct air capture (DAC) is poorly understood. To evaluate the MOF performance for DAC application under humid conditions, we investigate the adsorption of H2O, CO2, and N2 using density functional theory (DFT), grand canonical Monte Carlo (GCMC), and molecular dynamics (MD) simulations. The simulation results show a higher tendency of SIFSIX-3-Cu towards H2O adsorption rather than CO2 (and N2). The results agree with the adsorption isotherms for the pure compounds from the Sips model. The extended Sips model shows 1.34 mmol g-1 CO2 adsorption at the atmospheric pressure and 298 K for the CO2/N2 mixture containing 400 ppm CO2, and low CO2 adsorption (less than 0.75 mmol g-1) at a low relative humidity (RH) of 20%. This finding highlights the efficiency of SIFSIX-3-Cu for DAC in dry air and the negative impact of humidity on the CO2 selective adsorption. Therefore, we suggest to consider the impairing of humidity effects when designing a SIFSIX-3-Cu-based CO2 separation process and removal of any water vapor before introduction of the air to SIFSIX-3-Cu.
Collapse
Affiliation(s)
- Behrouz Bayati
- Department of Chemical Engineering, Ilam University, Ilam, 6939177111, Iran
- Department of Process Engineering, Memorial University, St. John's, NL, A1C 5S7, Canada.
| | - Fatemeh Keshavarz
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Nima Rezaei
- Department of Separation Science, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL, A1C 5S7, Canada.
| | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Study of adsorption of propane and propylene on CHA zeolite in different Si/Al ratios using molecular dynamics simulation. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Zhang Z, Zhao J, Zhang H, Zhang J, Yue Y, Qian G. Synthesis of amine grafted Cu-BTC and its application in regenerable adsorption of ultra-low concentration methyl mercaptan. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Lu SC, Wichidit T, Narkkun T, Tung KL, Faungnawakij K, Klaysom C. Aminosilane-Functionalized Zeolite Y in Pebax Mixed Matrix Hollow Fiber Membranes for CO 2/CH 4 Separation. Polymers (Basel) 2022; 15:polym15010102. [PMID: 36616452 PMCID: PMC9823953 DOI: 10.3390/polym15010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Due to their interfacial defects between inorganic fillers and polymer matrices, research into mixed matrix membranes (MMMs) is challenging. In the application of CO2 separation, these defects can potentially jeopardize the performance of membranes. In this study, aminosilane functionalization is employed to improve the nano-sized zeolite Y (ZeY) particle dispersion and adhesion in polyether block amide (Pebax). The performance of CO2/CH4 separation of Pebax mixed matrix composite hollow fiber membranes, incorporated with ZeY and aminosilane-modified zeolite Y (Mo-ZeY), is investigated. The addition of the zeolite filler at a small loading at 5 wt.% has a positive impact on both gas permeability and separation factor. Due to the CO2-facilitated transport effect, the performance of MMMs is further improved by the amino-functional groups modified on the ZeY. When 5 wt.% of Mo-ZeY is incorporated, the gas permeability and CO2/CH4 separation factor of the Pebax membrane are enhanced by over 100% and 35%, respectively.
Collapse
Affiliation(s)
- Soon-Chien Lu
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thakorn Wichidit
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanitporn Narkkun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Kuo-Lun Tung
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chalida Klaysom
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
6
|
Hu L, He X, He J, Zhu J. Adsorption and photocatalytic conversion of ethyl mercaptan to diethyl disulfide on Fe 2O 3-loaded HNbMoO 6 nanosheet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75417-75430. [PMID: 35653023 DOI: 10.1007/s11356-022-21146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Ethyl mercaptans which commonly exist in natural gas need to be removed due to their toxic, odorous, and corrosive properties. Herein, a novel Fe2O3-modified HNbMoO6 nanosheet catalyst (Fe2O3@e-HNbMoO6) was prepared by an exfoliation-impregnation method for the ethyl mercaptans removal. In the heterojunction catalyst, e-HNbMoO6 can be excited by visible light to generate the photogenic charge and has certain adsorption property for ethyl mercaptan with hydrogen bonding (Nb-OH or Mo-OH as the hydrogen bonding donor); Fe2O3 plays the role of accelerating photogenerated electrons and holes, and enhancing the adsorption of ethyl mercaptan with another hydrogen bonding (Fe-OH as the hydrogen bonding donor and receptor). Results showed that the adsorption capacity of Fe2O3@e-HNbMoO6 is 69.9 μmol/g for ethyl mercaptan. In addition, the photocatalytic conversion efficiency of ethyl mercaptan to diethyl disulfide is nearly 100% and it is higher than that of the other Nb-Mo based photocatalysts, such as LiNbMoO6, Fe1/3NbMoO6, Ce1/3NbMoO6, TiO2-HNbMoO6, e-HNbMoO6, CeO2@e-HNbMoO6, and Ag2O@e-HNbMoO6. Under the experimental conditions, the photocatalytic conversion efficiency is greater than the adsorption efficiency over Fe2O3@e-HNbMoO6, and there is no ethyl mercaptan output in the process of adsorption and photocatalytic conversion. Fe2O3@e-HNbMoO6 heterojunction catalyst has practical value and reference significance for purifying methane gas and enhancing photocatalytic conversion of ethyl mercaptan.
Collapse
Affiliation(s)
- Lifang Hu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
- Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, 241003, China.
| | - Xin He
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jie He
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jichao Zhu
- Analytical and Testing Center, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
7
|
Zhao L, Zhang Q, He C, Chen Q, Zhang BJ. Quantitative Structure-Property Relationship Analysis for the Prediction of Propylene Adsorption Capacity in Pure Silicon Zeolites at Various Pressure Levels. ACS OMEGA 2022; 7:33895-33907. [PMID: 36188274 PMCID: PMC9520561 DOI: 10.1021/acsomega.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
This work is devoted to the development of quantitative structure-property relationship (QSPR) models using various regression analyses to predict propylene (C3H6) adsorption capacity at various pressures in zeolites from a topologically diverse International Zeolite Association database. Based on univariate and multilinear regression analysis, the accessible volume and largest cavity diameter are the most crucial factors determining C3H6 uptake at high and low pressures, respectively. An artificial neural network (ANN) model with five structural descriptors is sufficient to predict C3H6 uptake at high pressures. For combined pressures, the prediction of an ANN model with pore size distribution is pleasing. The isosteric heat of adsorption (Q st) has a significant impact on the improvement of the prediction of low-pressure gas adsorption, which finely classifies zeolites into high or low C3H6 adsorbers. The conjunction of high-throughput screening and QSPR models contributes to being able to prescreen the database rapidly and accurately for top performers and perform further detailed and time-consuming computational-intensive molecular simulations on these candidates for other gas adsorption applications.
Collapse
|
8
|
Ramezani Shabolaghi K, Irani M. Ethanol adsorption in cation-exchanged linde type L zeolite, studied by molecular simulations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Moradi H, Azizpour H, Bahmanyar H, Rezamandi N, Zahedi P. Effect of Si/Al Ratio in the Faujasite Structure on Adsorption of Methane and Nitrogen: A Molecular Dynamics Study. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hojatollah Moradi
- University of Tehran Surface Phenomenon and Liquid-Liquid Extraction Research Laboratory, School of Chemical Engineering, College of Engineering Tehran Iran
| | - Hedayat Azizpour
- University of Tehran Surface Phenomenon and Liquid-Liquid Extraction Research Laboratory, School of Chemical Engineering, College of Engineering Tehran Iran
- University of Tehran Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering Fouman Iran
| | - Hossein Bahmanyar
- University of Tehran Surface Phenomenon and Liquid-Liquid Extraction Research Laboratory, School of Chemical Engineering, College of Engineering Tehran Iran
| | - Nariman Rezamandi
- University of Tehran Surface Phenomenon and Liquid-Liquid Extraction Research Laboratory, School of Chemical Engineering, College of Engineering Tehran Iran
| | - Payam Zahedi
- University of Tehran Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering P.O. Box 11155-4563 Tehran Iran
| |
Collapse
|
10
|
Moradi H, Azizpour H, Bahmanyar H, Emamian M. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Tang C, Ding K, Liu Y, Yu S, Chen J, Feng X, Zhang C, Chen J. Quantitative relationship between the structures and properties of VOCs and SOA formation on the surfaces of acidic aerosol particles. Phys Chem Chem Phys 2021; 23:12360-12370. [PMID: 34027522 DOI: 10.1039/d1cp01428e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, all the efforts, based on a series of molecular dynamics simulations on the interfacial process between VOC-contaminated air and acidic sulfate, were made to find how the structures and properties of VOCs are related to the formation of SOAs. The experimental fractional aerosol coefficients (FACs) were used to quantify the SOA formation and 14 VOC species were chosen based on the atmosphere inventory and the FAC magnitude. Finally, the quantitative relationship (QR) was found through the FAC as a function of the two variables the total valid interactions (Tg) and the diffusion coefficient (D), with R square 0.94. Meanwhile, the effect of water was explored and the QR was proved to be rational and reliable. The QR not only explained the SOA formation capacity of VOCs, but could also predict the SOA formation of new molecules.
Collapse
Affiliation(s)
- Chunxue Tang
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Keyi Ding
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Yaoze Liu
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Shengping Yu
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Junhui Chen
- Sichuan Academy of Environmental Sciences, Chengdu, Sichuan 610064, China
| | - Xiaoqiong Feng
- Sichuan Academy of Environmental Sciences, Chengdu, Sichuan 610064, China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Junxian Chen
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| |
Collapse
|
12
|
Experimental and modeling studies for intensification of mercaptans extraction from LSRN using a microfluidic system. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|