1
|
Yang K, Shi S, Wu J, Han S, Tai S, Zhang S, Zhang K. A dynamic Eu(III)-macrocycle served as the turn-on fluorescent probe for distinguishing H 2O from D 2O. Anal Chim Acta 2024; 1286:342048. [PMID: 38049238 DOI: 10.1016/j.aca.2023.342048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
H2O and D2O are an important pair of analogues, and their high-efficient detections are closely related to fields of chemical industry, food processing, semiconductor, environmental monitoring, etc. Because of their extremely similar physical and chemical properties, H2O and D2O can be mutually soluble in any ratios, and it is generally thought that the discrimination of H2O and D2O is an enormous challenge. Herein, upon the fact that vibrational frequency of O-H is greater than O-D, we design a dynamic Eu(III)-macrocycle Eu-2a with two emitters which exhibits the imine bond breakage of macrocycle emitter H2L2a in H2O or D2O, resulting in the turn-on fluorescence of Eu(III) emitter. For their differential fluorescence sensing signals of Eu-2a on three emission bands (433, 500 and 615 nm), the statistical analysis method is employed to produce fully separated fingerprints and thus high-throughput discrimination of 13 common solvents, especially the H2O and D2O. Fluorescent titration experiments by instrumental or smartphone-based analysis method also prove the successful determination of proportional H2O/D2O mixtures together with the good sensitivity and wide linear response range. Moreover, this H2O-triggered fluorescent complex Eu-2a used as the fluorescence ink also shows its potential in information encryption application. This article must be a valuable reference for the areas of lanthanide-based luminescent material, multianalyte detection and information encryption.
Collapse
Affiliation(s)
- Kang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shuaibo Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jinyu Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shaolong Han
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shengdi Tai
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shishen Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kun Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Zhang S, Yin W, Yang Z, Yang Y, Li Z, Zhang S, Zhang B, Dong F, Lv J, Han B, Lei Z, Ma H. Functional Copolymers Married with Lanthanide(III) Ions: A Win-Win Pathway to Fabricate Rare Earth Fluorescent Materials with Multiple Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5539-5550. [PMID: 33481562 DOI: 10.1021/acsami.0c19827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lanthanide(III)-based luminescent materials have attracted great research interests due to their unique optical, electronic, and chemical characteristics. Up to now, how to extend these materials into large, broad application fields is still a great challenging task. In this contribution, we are intended to present a simple but facile strategy to enhance the luminescence from lanthanide ions and impart lanthanide(III)-based luminescent materials with more applicable properties, leading to meet the requirements from different purposes, such as being used as highly emissive powders, hydrogels, films, and sensitive probes under external stimuli. Herein, a water soluble, blue color emissive, temperature sensitive, and film-processable copolymer (Poly-ligand) was designed and synthesized. Upon complexing with Eu3+ and Tb3+ ions, the red color-emitting Poly-ligand-Eu and green color-emitting Poly-ligand-Tb were produced. After finely tuning the ratios between them, a standard white color emitting Poly-ligand-Eu1:Tb4 (CIE = 0.33 and 0.33) was obtained. Furthermore, the resulted materials not only possessed the emissive luminescent property but also inherited functions from the copolymer of Poly-ligand. Thus, these lanthanide(III)-based materials were used for fingerprint imaging, luminescent soft matters formation, colorful organic light-emitting diode device fabrication, and acid/alkali vapors detection.
Collapse
Affiliation(s)
- Shaoxiong Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Weidong Yin
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Zengming Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Yuan Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Zhao Li
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Shengjun Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Bo Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Fenghao Dong
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Jiawei Lv
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Bingyang Han
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Ziqiang Lei
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Hengchang Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| |
Collapse
|
3
|
Zhang K, Huang Y, Shen YJ, Ma S, Chen TT. Combination of imine bond and samarium emitter enables turn-off fluorescence detection of hydrazine in vapor and water samples. Talanta 2020; 225:122065. [PMID: 33592784 DOI: 10.1016/j.talanta.2020.122065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The development of convenient and efficient fluorescence techniques is of great significance for selective detection and precise determination of biotoxic N2H4 in human health and environmental sciences. By the pre-organization-assisted template synthesis, disclosed here is a luminescent Sm(III) macrocycle-based probe Sm-2m bearing dynamic imine bonds as recognition moieties which provides the selective and ratiometric turn-off fluorescence sensing for N2H4 over various amine species based on the N2H4-induced structure transformation. This fluorescent sensing process finished within 20 min shows the low limit of detection (0.18 μM, 7.2 ppb) and wide linear sensing range (0-60.0 μM). Furthermore, probe Sm-2m is also be used to quantitatively determine N2H4 in vapor gas and water samples through fluorescence color changes, which are evaluated by the Sm-2m-impregnated test paper strips and RGB value outputs. Finally, our proposed smartphone-based analytical method gives satisfactory N2H4 detection results. It is thus believed that this work can shed some lights on development of optical probes and detection techniques for N2H4, even other hazardous chemicals.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China.
| | - Yan Huang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Yin-Jing Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Shuang Ma
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Ting-Ting Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| |
Collapse
|
4
|
Salerno EV, Eliseeva SV, Schneider BL, Kampf JW, Petoud S, Pecoraro VL. Visible, Near-Infrared, and Dual-Range Luminescence Spanning the 4f Series Sensitized by a Gallium(III)/Lanthanide(III) Metallacrown Structure. J Phys Chem A 2020; 124:10550-10564. [DOI: 10.1021/acs.jpca.0c08819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elvin V. Salerno
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Svetlana V. Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Bernadette L. Schneider
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Vincent L. Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Zhang K, Chen TT, Shen YJ, Yang ZR, Huang Y, Zhang S, Xue J, Li B. An N-linked disalicylaldehyde together with its caesium ion and dichloromethane sensing performances: ‘dual key & lock’ LMCT-enhanced fluorescence strategy. Analyst 2020; 145:5826-5835. [DOI: 10.1039/d0an00475h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The disalicylaldehyde-Cs+sensing system, a novel approach for quick and reusable detection of Cs+together with convenient CH2Cl2monitoring.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Higher Education District
- Hangzhou 310018
- P. R. China
| | - Ting-Ting Chen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Higher Education District
- Hangzhou 310018
- P. R. China
| | - Yin-Jing Shen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Higher Education District
- Hangzhou 310018
- P. R. China
| | - Zhuo-Ran Yang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Higher Education District
- Hangzhou 310018
- P. R. China
| | - Yan Huang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Higher Education District
- Hangzhou 310018
- P. R. China
| | - Shishen Zhang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Higher Education District
- Hangzhou 310018
- P. R. China
| | - Jiadan Xue
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Higher Education District
- Hangzhou 310018
- P. R. China
| | - Benxia Li
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Higher Education District
- Hangzhou 310018
- P. R. China
| |
Collapse
|
6
|
Zhang K, Lu ZY, Feng CC, Yang ZR, Nie PP, Chen TT, Zhang LF, Ma S, Shen YJ, Lin ML. Series of Highly Luminescent Macrocyclic Sm(III) Complexes: Functional Group Modifications Together with Luminescence Performances in Solid-State, Solution, and Doped Poly(methylmethacrylate) Film. ACS OMEGA 2019; 4:18334-18341. [PMID: 31720535 PMCID: PMC6844102 DOI: 10.1021/acsomega.9b02576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Here, we report our trials to regulate the luminescence performance of the macrocyclic samarium(III) complex and prepare four excellent luminescent Sm(III) complex-doped poly(methylmethacrylate) (PMMA) composites. Four 23-membered [1 + 1] Schiff-base macrocyclic mononuclear Sm(III) complexes, Sm-2 a -Sm-2 d , originating from dialdehydes with different pendant arms and 1,2-bis(2-aminoethoxy)ethane, have been constructed by the template method. Crystal structures reveal that every Sm(III) ion with the coordination geometry of a distorted bicapped square antiprism is capsulated by the macrocyclic cavity environment forming the "lasso-type" protection. Relative photophysical properties of macrocyclic Sm(III) complexes are carefully investigated in solid-state, methanol solution, and doped PMMA film, and all these show characteristic emissions of the Sm(III) ion associated with satisfactory lifetimes and quantum yields in all media, which could be comparable to reported outstanding examples. Especially, the luminescence performance for this type of Sm(III) complex could be regulated in the solid state by the use of different functional groups in the pendant arm while it is not achieved in solution and the doped PMMA composite. High emitting and air-stable plastic materials could be obtained when these Sm(III) complexes are doped in PMMA with 0.1 wt % mixing ratio, and the corresponding maximum lifetime and quantum yield are 61.2 μs and 0.63% in the case of complex Sm-2 a , respectively. We believe that these highly luminescent "lasso-type" Sm(III) complexes and doped PMMA composites are valuable references in the design of luminescent lanthanide(III) hybrid materials.
Collapse
|