1
|
Sławińska A, Tyszka-Czochara M, Serda P, Oszajca M, Ruggiero-Mikołajczyk M, Pamin K, Napruszewska BD, Prochownik E, Łasocha W. New Organic-Inorganic Hybrid Compounds Based on Sodium Peroxidomolybdates (VI) and Derivatives of Pyridine Acids: Structure Determination and Catalytic Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5976. [PMID: 36079356 PMCID: PMC9457328 DOI: 10.3390/ma15175976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Two organic-inorganic hybrids based on sodium peroxidomolybdates(VI) and 3,5-dicarboxylic pyridine acid (Na-35dcpa) or N-oxide isonicotinic acid (Na-isoO) have been synthesized and characterized. All compounds contain inorganic parts: a pentagonal bipyramid with molybdenum center, and an organic part containing 3,5-dicarboxylic pyridine acid or N-oxide isonicotinic acid moieties. The type of organic part used in the synthesis influences the crystal structure of obtained compounds. This aspect can be interesting for crystal engineering. Crystal structures were determined using powder X-ray diffraction or single crystal diffraction for compounds Na-35dcpa and Na-isoO, respectively. Elemental analysis was used to check the purity of the obtained compounds, while X-ray Powder Diffraction (XRPD) vs. temp. was applied to verify their stability. Moreover, all the compounds were examined by Infrared (IR) spectroscopy. Their catalytic activity was tested in the Baeyer-Villiger (BV) oxidation of cyclohexanone to ε-caprolactone in the oxygen-aldehyde system. The highest catalytic activity in the BV oxidation was observed for Na-35dcpa. The compounds were also tested for biological activity on human normal cells (fibroblasts) and colon cancer cell lines (HT-29, LoVo, SW 620, HCT 116). All compounds were cytotoxic against tumor cells with metastatic characteristics, which makes them interesting and promising candidates for further investigations of specific anticancer mechanisms.
Collapse
Affiliation(s)
- Adrianna Sławińska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | | | - Paweł Serda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marcin Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Małgorzata Ruggiero-Mikołajczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Katarzyna Pamin
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Bogna D. Napruszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Ewelina Prochownik
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Wiesław Łasocha
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Sławińska A, Tyszka-Czochara M, Serda P, Oszajca M, Ruggiero-Mikołajczyk M, Pamin K, Karcz R, Łasocha W. Newly-Obtained Two Organic-Inorganic Hybrid Compounds Based on Potassium Peroxidomolybdate and Dicarboxypyridinic Acid: Structure Determination, Catalytic Properties, and Cytotoxic Effects of Eight Peroxidomolybdates in Colon and Hepatic Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 15:ma15010241. [PMID: 35009389 PMCID: PMC8746204 DOI: 10.3390/ma15010241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 05/03/2023]
Abstract
Two new organic-inorganic hybrid compounds containing dicarboxylic pyridine acids have been obtained and characterized. Both compounds are potassium oxidodiperoxidomolybdates with 2,6-dicarboxylicpyridine acid or 3,5-dicarboxylicpyridine acid moieties, respectively. The chemical formula for the first one is C14H7K3Mo2N2O18 denoted as K26dcpa, the second C7H4K1Mo1N1O11.5-K35dcpa. Their crystal structures were determined using single crystal (K26dcpa) or XRPD-X-ray powder diffraction techniques (K35dcpa). The purity of the compounds was confirmed by elemental analysis. Their thermal stability was determined with the use of non-ambient XRPD. In addition, they were examined by IR spectroscopy methods and catalytic activity studies were performed for them. Catalytic tests in the Baeyer-Villiger reaction and biological activity have been performed for eight compounds: K26dcpa, K35dcpa, and six peroxidomolybdates previously obtained by our group. The anti-proliferative activity of peroxidomolybdenum compounds after 24 h of incubation was studied in vitro against three selected human tumor cell lines (SW620, LoVo, HEP G2) and normal human cells (fibroblasts). The data were expressed as IC50 values. The structure of the investigated oxodiperoxomolybdenum compounds was shown to have influence on the biological activity and catalytic properties. It has been shown that the newly-obtained compound, K35dcpa, is a very efficient catalyst in the Baeyer-Villiger reaction. The best biological activity results were obtained for Na-picO (previously obtained by us), which is a very effective anti-cancer agent towards SW 620 colorectal adenocarcinoma cells.
Collapse
Affiliation(s)
- Adrianna Sławińska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.S.); (M.R.-M.); (K.P.); (R.K.)
| | | | - Paweł Serda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.S.); (M.O.)
| | - Marcin Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.S.); (M.O.)
| | - Małgorzata Ruggiero-Mikołajczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.S.); (M.R.-M.); (K.P.); (R.K.)
| | - Katarzyna Pamin
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.S.); (M.R.-M.); (K.P.); (R.K.)
| | - Robert Karcz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.S.); (M.R.-M.); (K.P.); (R.K.)
| | - Wiesław Łasocha
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.S.); (M.R.-M.); (K.P.); (R.K.)
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.S.); (M.O.)
- Correspondence:
| |
Collapse
|
3
|
Lu M, Zhang Y, Su Z, Tu Y, Wang J, Liu S, Liu J, Jiang T. The comprehensive investigation on removal mechanism of Cr(VI) by humic acid-Fe(II) system structured on V, Ti-bearing magnetite surface. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|