1
|
Adam MSS, Khalil A. Bioreactivity of divalent bimetallic vanadyl and zinc complexes bis-oxalyldihydrazone ligand against microbial and human cancer series. ctDNA interaction mode. Int J Biol Macromol 2023; 249:125917. [PMID: 37524289 DOI: 10.1016/j.ijbiomac.2023.125917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Two novel divalent bimetallic complexes were constructed from the complexation of O=V4+ and Zn2+ ions (VOL and ZnL), respectively, with diisatin oxalyldihydrazone ligand (H2L). Various spectroscopic tools were used to confirm their chemical structures (FT-IR, NMR, EI-Mass, and electronic spectra), besides, elemental analyses and conductivity features. To estimate the role of divalent metal ions in their coordination compound for developing their bio-reactivity, the free ligand H2Lox, and its complexes (VOL and ZnL) were employed spectroscopic investigations against the growth of some microbial series (fungi and bacteria) and also against three human cancer/normal cells. Furthermore, their interaction behavior against calf thymus DNA (ctDNA) was studied through viscometric and spectrophotometric studies to discover the role of O=V4+ and Zn2+ ions to determine the mode of binding with ctDNA. The inhibiting effect of H2L, VOL, and ZnL versus the titled microbial (bacterial and fungal) was built upon their inhibited zone areas in mm and the MIC concentrations in μM. Their action against the three human cancer cells' growth was evaluated by IC50 values in μM and the selectivity index in percentage. Both VOL and ZnL complexes exhibited an amazing series with three human cancer cell growth (according to the zone values in mm of inhibition, MIC in μM, and IC50 values in μM) compared to those of their uncoordinated H2L ligand. VOL demonstrated a distinguished interacting behavior with ctDNA more than that interaction of ZnL depending on the variation of the central metal ion chemical features. Within the covalent and non-covalent interaction modes, the interaction binding between H2L, VOL, and ZnL with ctDNA was discussed based on the electronic spectroscopic observation.
Collapse
Affiliation(s)
- Mohamed Shaker S Adam
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt.
| | - Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Comprehensive catalytic and biological studies on new designed oxo- and dioxo-metal (IV/VI) organic arylhydrazone frameworks. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Research Progress on the Biological Activities of Metal Complexes Bearing Polycyclic Aromatic Hydrazones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238393. [PMID: 36500482 PMCID: PMC9739244 DOI: 10.3390/molecules27238393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Due to the abundant and promising biological activities of aromatic hydrazones, it is of great significance to study the biological activities of their metal complexes for the research and development of metal-based drugs. In this review, we focus on the metal complexes of polycyclic aromatic hydrazones, which still do not receive much attention, and summarize the studies related to their biological activities. Although the large number of metal complexes in phenylhydrazone prevent them all from being summarized, the significant value of polycyclic aromatic hydrocarbons themselves (such as naphthalene and anthracene) as pharmacophores are also considered. Therefore, the bioactivities of the metal complexes of naphthylhydrazone and anthrahydrazone are focused on, and the recent research progress on the metal complexes of anthrahydrazone by the authors is also included. In terms of biological activities, these complexes mainly show antibacterial and anticancer activities, along with less bioactivities. The present review demonstrates that the structural design and bioactivities of these complexes are fundamental, which also indicates a certain structure-activity relationship (SAR) in some substructural areas. However, a systematic and comprehensive conclusion of the SAR is still not available, which suggests that more attention should be paid to the bioactivities of the metal complexes of polycyclic aromatic hydrazones since their potential in structural design and biological activity remains to be explored. We hope that this review will attract more researchers to devote their interest and energy into this promising area.
Collapse
|
4
|
Kaya Y. Investigation of spectroscopic, crystallographic, thermal and antioxidant properties of mononuclear dioxomolybdenum(VI) complexes derived from a new symmetric bisthiocarbohydrazone. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Dinda R, Majumder S, Mohanty M, Mohapatra D, Aradhana Patra S, Parida R, Giri S, Reuter H, Kausar C, Kumar Patra S. Dioxidomolybdenum(VI) complexes of azo-hydrazones: Structural investigation, DNA binding and cytotoxicity studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Patra SA, Banerjee A, Sahu G, Mohanty M, Lima S, Mohapatra D, Görls H, Plass W, Dinda R. Evaluation of DNA/BSA interaction and in vitro cell cytotoxicity of μ2-oxido bridged divanadium(V) complexes containing ONO donor ligands. J Inorg Biochem 2022; 233:111852. [DOI: 10.1016/j.jinorgbio.2022.111852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
|
7
|
Adam MSS, Shaaban S, El‐Metwaly NM. Two ionic oxo‐vanadate and dioxo‐molybdate complexes of dinitro‐aroylhydazone derivative: effective catalysts towards epoxidation reactions, biological activity,
ct
DNA binding, DFT and
silico
investigations. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Saad Shaaban
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
- Department of Chemistry, Faculty of Applied Science Umm Al Qura University Makkah Saudi Arabia
| |
Collapse
|
8
|
Mohanty M, Sahu G, Banerjee A, Lima S, Patra SA, Crochet A, Sciortino G, Sanna D, Ugone V, Garribba E, Dinda R. Mo(VI) Potential Metallodrugs: Explaining the Transport and Cytotoxicity by Chemical Transformations. Inorg Chem 2022; 61:4513-4532. [PMID: 35213131 DOI: 10.1021/acs.inorgchem.2c00113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transport and cytotoxicity of molybdenum-based drugs have been explained with the concept of chemical transformation, a very important idea in inorganic medicinal chemistry that is often overlooked in the interpretation of the biological activity of metal-containing systems. Two monomeric, [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(EtOH)] (2), and two mixed-ligand dimeric MoVIO2 species, [{MoO2(L1-2)}2(μ-4,4'-bipy)] (3-4), were synthesized and characterized. The structures of the solid complexes were solved through SC-XRD, while their transformation in water was clarified by UV-vis, ESI-MS, and DFT. In aqueous solution, 1-4 lead to the penta-coordinated [MoO2(L1-2)] active species after the release of the solvent molecule (1 and 2) or removal of the 4,4'-bipy bridge (3 and 4). [MoO2(L1-2)] are stable in solution and react with neither serum bioligand nor cellular reductants. The binding affinity of 1-4 toward HSA and DNA were evaluated through analytical and computational methods and in both cases a non-covalent interaction is expected. Furthermore, the in vitro cytotoxicity of the complexes was also determined and flow cytometry analysis showed the apoptotic death of the cancer cells. Interestingly, μ-4,4'-bipy bridged complexes 3 and 4 were found to be more active than monomeric 1 and 2, due to the mixture of species generated, that is [MoO2(L1-2)] and the cytotoxic 4,4'-bipy released after their dissociation. Since in the cytosol neither the reduction of MoVI to MoV/IV takes place nor the production of reactive oxygen species (ROS) through Fenton-like reactions of 1-4 with H2O2 occurs, the mechanism of cytotoxicity should be attributable to the direct interaction with DNA that happens with a minor-groove binding which results in cell death through an apoptotic mechanism.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Aurélien Crochet
- Department of Chemistry, Fribourg Center for Nanomaterials, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
9
|
Spectral studies and crystal structures of molybdenum(VI) complexes containing pyridine or picoline as auxiliary ligands: interaction energy calculations and free radical scavenging studies. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00440-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|