1
|
Hammond M, Vaccaro DA, Parkin G. Synthesis and structural characterization of thallium and cadmium carbatrane compounds, [ TismPriBenz]Tl and [ TismPriBenz]CdMe. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Baalbaki HA, Shu J, Nyamayaro K, Jung HJ, Mehrkhodavandi P. Thermally stable zinc hydride catalyst for hydrosilylation of CO 2 to silyl formate at atmospheric pressure. Chem Commun (Camb) 2022; 58:6192-6195. [PMID: 35506769 DOI: 10.1039/d2cc01498j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutral zinc complexes supported by H[PNNO], a diaminophenolate ligand bearing a pendant phosphine group, were synthesized and characterized. The phosphine arm adopts two different configurations in solution and prevents aggregation. The monomeric zinc hydride complex is stable at elevated temperatures up to 125 °C and reacts readily with CO2 to afford a zinc formate complex. The zinc hydride is active for CO2 hydrosilylation at atmospheric CO2 pressure and is selective for CO2 reduction to the silyl-formate product.
Collapse
Affiliation(s)
- Hassan A Baalbaki
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| | - Julia Shu
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| | - Kudzanai Nyamayaro
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| | - Hyuk-Joon Jung
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| | - Parisa Mehrkhodavandi
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Ruccolo S, Sambade D, Shlian DG, Amemiya E, Parkin G. Catalytic reduction of carbon dioxide by a zinc hydride compound, [Tptm]ZnH, and conversion to the methanol level. Dalton Trans 2022; 51:5868-5877. [PMID: 35343979 DOI: 10.1039/d1dt04156h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zinc hydride compound, [Tptm]ZnH, may achieve the reduction of CO2 by (RO)3SiH (R = Me, Et) to the methanol oxidation level, (MeO)xSi(OR)4-x, via the formate species, HCO2Si(OR)3. However, because insertion of CO2 into the Zn-H bond is more facile than insertion of HCO2Si(OR)3, conversion of HCO2Si(OR)3 to the methanol level only occurs to a significant extent in the absence of CO2.
Collapse
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - David Sambade
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
4
|
Shlian DG, Amemiya E, Parkin G. Synthesis of bis(2-pyridylthio)methyl zinc hydride and catalytic hydrosilylation and hydroboration of CO 2. Chem Commun (Camb) 2022; 58:4188-4191. [PMID: 35266933 DOI: 10.1039/d1cc06963b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of bis(2-pyridylthio)methane with Me2Zn and Zn[N(SiMe3)2]2 afford [Bptm]ZnMe and [Bptm]ZnN(SiMe3)2, thereby providing access to a variety of other [Bptm]ZnX derivatives, including the zinc hydride complex [Bptm]ZnH, which serves as a catalyst for the reduction of CO2 and other carbonyl compounds via hydrosilylation and hydroboration.
Collapse
Affiliation(s)
- Daniel G Shlian
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
5
|
Michaliszyn K, Smirnova ES, Bucci A, Martin-Diaconescu V, Lloret-Fillol J. Well‐defined Nickel P3C Complexes as Hydrogenation Catalysts of N‐Heteroarenes Under Mild Conditions. ChemCatChem 2022. [DOI: 10.1002/cctc.202200039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Alberto Bucci
- ICIQ: Institut Catala d'Investigacio Quimica - SPAIN
| | | | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ) - Ave. Paisos Catalans 16Spain 43005 Tarragona SPAIN
| |
Collapse
|
6
|
Buss JA, Shida N, He T, Agapie T. Carbon Dioxide Reduction with Dihydrogen and Silanes at Low-Valent Molybdenum Terphenyl Diphosphine Complexes: Reductant Identity Dictates Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua A. Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Naoki Shida
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Tianyi He
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
7
|
González T, García JJ. Catalytic CO2 hydrosilylation with [Mn(CO)5Br] under mild reaction conditions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ruccolo S, Amemiya E, Shlian DG, Parkin G. Hydrosilyation of CO2 using a silatrane hydride: structural characterization of a silyl formate compound. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The silatrane hydride compound, [N(CH2CH2O)3]SiH, reacts with CO2 in the presence of the [tris(2-pyridylthio)methyl]zinc hydride complex, [Tptm]ZnH, to afford the silyl formate and methoxide derivatives, [N(CH2CH2O)3]SiO2CH and [N(CH2CH2O)3]SiOCH3. The molecular structure of [N(CH2CH2O)3]SiO2CH has been determined by X-ray diffraction, thereby demonstrating that the formate ligand adopts a distal conformation in which the uncoordinated oxygen atom resides with a trans-like disposition relative to silicon. Density functional theory calculations indicate that the atrane motif of [N(CH2CH2O)3]SiO2CH is flexible, such that the energy of the molecule changes relatively little as the Si···N distance varies over the range 2.0–3.0 Å.
Collapse
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Daniel G. Shlian
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
9
|
Caise A, Hicks J, Ángeles Fuentes M, Goicoechea JM, Aldridge S. Partnering a Three-Coordinate Gallium Cation with a Hydroborate Counter-Ion for the Catalytic Hydrosilylation of CO 2. Chemistry 2021; 27:2138-2148. [PMID: 33169886 DOI: 10.1002/chem.202004408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Indexed: 12/16/2022]
Abstract
A novel β-diketiminate stabilized gallium hydride, (Dipp L)Ga(Ad)H (where (Dipp L)={HC(MeCDippN)2 }, Dipp=2,6-diisopropylphenyl and Ad=1-adamantyl), has been synthesized and shown to undergo insertion of carbon dioxide into the Ga-H bond under mild conditions. In this case, treatment of the resulting κ1 -formate complex with triethylsilane does not lead to regeneration of the hydride precursor. However, when combined with B(C6 F5 )3 , (Dipp L)Ga(Ad)H catalyses the reductive hydrosilylation of CO2 . Under stoichiometric conditions, the addition of one equivalent of B(C6 F5 )3 to (Dipp L)Ga(Ad)H leads to the formation of a 3-coordinate cationic gallane complex, partnered with a hydroborate anion, [(Dipp L)Ga(Ad)][HB(C6 F5 )3 ]. This complex rapidly hydrometallates carbon dioxide and catalyses the selective reduction of CO2 to the formaldehyde oxidation level at 60 °C in the presence of Et3 SiH (yielding H2 C(OSiEt3 )2 ). When catalysis is undertaken in the presence of excess B(C6 F5 )3 , appreciable enhancement of activity is observed, with a corresponding reduction in selectivity: the product distribution includes H2 C(OSiEt3 )2 , CH4 and O(SiEt3 )2 . While this system represents proof-of-concept in CO2 hydrosilylation by a gallium hydride system, the TOF values obtained are relatively modest (max. 10 h-1 ). This is attributed to the strength of binding of the formatoborate anion to the gallium centre in the catalytic intermediate (Dipp L)Ga(Ad){OC(H)OB(C6 F5 )3 }, and the correspondingly slow rate of the turnover-limiting hydrosilylation step. In turn, this strength of binding can be related to the relatively high Lewis acidity measured for the [(Dipp L)Ga(Ad)]+ cation (AN=69.8).
Collapse
Affiliation(s)
- Alexa Caise
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - M Ángeles Fuentes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jose M Goicoechea
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
10
|
Quinlivan PJ, Loo A, Shlian DG, Martinez J, Parkin G. N-Heterocyclic Carbene Complexes of Nickel, Palladium, and Iridium Derived from Nitron: Synthesis, Structures, and Catalytic Properties. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick J. Quinlivan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Aaron Loo
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Daniel G. Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Joan Martinez
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
11
|
Amemiya E, Loo A, Shlian DG, Parkin G. Rhenium versus cadmium: an alternative structure for a thermally stable cadmium carbonyl compound. Chem Sci 2020; 11:11763-11776. [PMID: 34123203 PMCID: PMC8162458 DOI: 10.1039/d0sc04596a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
An alternative description is provided for the previously reported novel tetranuclear cadmium carbonyl compound, [Cd(CO)3(C6H3Cl)]4. Specifically, consideration of single crystal X-ray diffraction data indicates that the compound is better formulated as the rhenium compound, [Re(CO)3(C4N2H3S)]4. Furthermore, density functional theory calculations predict that, if it were to exist, [Cd(CO)3(C6H3Cl)]4 would have a very different structure to that reported. While it is well known that X-ray diffraction may not reliably distinguish between atoms of similar atomic number (e.g. N/C and Cl/S), it is not generally recognized that two atoms with very different atomic numbers could be misassigned. The misidentification of two elements as diverse as Re and Cd (ΔZ = 27) is unexpected and serves as an important caveat for structure determinations.
Collapse
Affiliation(s)
- Erika Amemiya
- Department of Chemistry, Columbia University New York 10027 USA
| | - Aaron Loo
- Department of Chemistry, Columbia University New York 10027 USA
| | - Daniel G Shlian
- Department of Chemistry, Columbia University New York 10027 USA
| | - Gerard Parkin
- Department of Chemistry, Columbia University New York 10027 USA
| |
Collapse
|