1
|
Dinuclear Zn(II) complexes with Schiff base ligands derived from 4-aminoantipyrine; crystal structure and catalytic activity in the synthesis of tetrazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
2
|
Bikas R, Shaghaghi Z, Heshmati-Sharabiani Y, Heydari N, Lis T. Water oxidation reaction in the presence of a dinuclear Mn(II)-semicarbohydrazone coordination compound. PHOTOSYNTHESIS RESEARCH 2022; 154:383-395. [PMID: 35870060 DOI: 10.1007/s11120-022-00939-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Water splitting, producing of oxygen, and hydrogen molecules, is an essential reaction for clean energy resources and is one of the challenging reactions for artificial photosynthesis. The Mn4Ca cluster in photosystem II (PS-II) is responsible for water oxidation in natural photosynthesis. Due to this, water oxidation reaction by Mn coordination compounds is vital for mimicking the active core of the oxygen-evolving complex in PS-II. Here, a new dinuclear Mn(II)-semicarbohydrazone coordination compound, [Mn(HL)(µ-N3)Cl]2 (1), was synthesized and characterized by various methods. The structure of compound 1 was determined by single crystal X-ray analysis, which revealed the Mn(II) ions have distorted octahedral geometry as (MnN4OCl). This geometry is created by coordinating of oxygen and two nitrogen donor atoms from semicarbohydrazone ligand, two nitrogen atoms from azide bridges, and chloride anion. Compound 1 was used as a catalyst for electrochemical water oxidation, and the surface of the electrode after the reaction was investigated by scanning electron microscopy, energy dispersive spectrometry, and powder X-ray diffraction analyses. Linear sweep voltammetry (LSV) experiments revealed that the electrode containing 1 shows high activity for chemical water oxidation with an electrochemical overpotential as low as 377 mV. Although our findings showed that the carbon paste electrode in the presence of 1 is an efficient electrode for water oxidation, it could not withstand water oxidation catalysis under bulk electrolysis and finally converted to Mn oxide nanoparticles which were active for water oxidation along with compound 1.
Collapse
Affiliation(s)
- Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, 34148-96818, Iran.
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Yahya Heshmati-Sharabiani
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Neda Heydari
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
3
|
Shaghaghi Z, Bikas R, Heshmati-Sharabiani Y, Trzybiński D, Woźniak K. Investigation of electrocatalytic activity of a new mononuclear Mn(II) complex for water oxidation in alkaline media. PHOTOSYNTHESIS RESEARCH 2022; 154:369-381. [PMID: 35763236 DOI: 10.1007/s11120-022-00931-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Water splitting is a promising way to alleviate the energy crisis. In nature, water oxidation is done by a tetranuclear manganese cluster in photosystem II. Therefore, the study of water oxidation by Mn complexes is attractive in water splitting systems. In this report, a new mononuclear Mn(II) complex, MnL2 (HL = (E)-3-hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide) was prepared and characterized by spectroscopic techniques and single-crystal X-ray diffraction. Crystallographic analysis indicated that the geometry around the Mn(II) ion is distorted octahedral. The MnN4O2 coordination moiety is achieved by bounding of oxygen and two nitrogen donor atoms of two hydrazone ligands. The synthesized complex was also investigated for electrochemical water oxidation using electrochemical techniques, scanning electron microscopy, energy dispersive spectrometry, and PXRD analysis. Linear sweep voltammetry experiment showed that the modified carbon paste electrode by the complex displays high activity for water oxidation reaction with an overpotential of 565 mV at a current density of 10 mA cm-2 and Tafel slope of 105 mV dec-1 in an alkaline solution. It was found that the complex structure finally changes during the reaction and converts to Mn oxide nanoparticles which act as active catalytic species and oxidize the water.
Collapse
Affiliation(s)
- Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, 34148-96818, Iran.
| | - Yahya Heshmati-Sharabiani
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Damian Trzybiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
4
|
Zabihollahi Z, Bikas R, Hossaini-Sadr M, Kozakiewicz-Piekarz A, Soltani B. Tetranuclear Zn(II) complexes with ditopic picolinohydrazone ligands: Synthesis, crystal structure, spectroscopic studies, and Hirschfeld surface analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Strong proton transfer from phenolic ring to imine functionality in 1D azido and dicyanamido bridged Mn(II) coordination polymers: Synthesis, crystal structure and magnetic studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Li C, Ji M, Zhang K, Sun S, Jiang J. Dinuclear bismuth (III) complex constructed by isoniazid‐derived Schiff‐base: synthesis, crystal structure, and biological activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chuan‐Hua Li
- Hunan Provincial Key Laboratory of Xiangnan Rare‐Precious Metals Compounds and Applications School of Chemistry and Environmental Science Chenzhou Hunan Province China
| | - Meng‐Han Ji
- Hunan Provincial Key Laboratory of Xiangnan Rare‐Precious Metals Compounds and Applications School of Chemistry and Environmental Science Chenzhou Hunan Province China
| | - Kai‐Wen Zhang
- Hunan Provincial Key Laboratory of Xiangnan Rare‐Precious Metals Compounds and Applications School of Chemistry and Environmental Science Chenzhou Hunan Province China
| | - Shou‐Ying Sun
- Hunan Provincial Key Laboratory of Xiangnan Rare‐Precious Metals Compounds and Applications School of Chemistry and Environmental Science Chenzhou Hunan Province China
| | - Jian‐Hong Jiang
- Hunan Provincial Key Laboratory of Xiangnan Rare‐Precious Metals Compounds and Applications School of Chemistry and Environmental Science Chenzhou Hunan Province China
| |
Collapse
|
7
|
Thermal and kinetic analysis of a new hydrazone-oxime ligand and its cadmium(II) complex: Synthesis, spectral characterization, crystallographic determination and Hirshfeld surface analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Li CH, Jiang JH, Lei YH, Li X, Yao FH, Ji MH, Zhang KW, Tao LM, Ye LJ, Li QG. Design, synthesis, and biological evaluation of dinuclear bismuth(III) complexes with Isoniazid-derived Schiff bases. J Inorg Biochem 2022; 235:111931. [PMID: 35868066 DOI: 10.1016/j.jinorgbio.2022.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
Four dinuclear bismuth(III) Schiff-base complexes bearing Schiff-base ligands have been synthesized and structurally characterized by single-crystal X-ray diffraction, elemental analysis, and spectral techniques (FT-IR, NMR and MS). The analytical data reveal the bismuth(III) complexes possess 1:1 metal-ligand ratios. In vitro biological studies have revealed that bismuth(III) complexes displayed much higher antibacterial and antitumor activities than their parent ligands, which involves two gram-negative (S. aureus, B. subtili) and two gram-positive (E. coli, P. aeruginosa) bacteria, and human gastric cancer SNU-16 cells. The power-time curves of S. pombe exposed to tested compounds were detected by bio-microcalorimetry. Some thermokinetic parameters (k, Pmax,tG and Qtotal) were derived based on the metabolic power-time curves, and their quantitative relationships with the concentrations (c) were further discussed.
Collapse
Affiliation(s)
- Chuan-Hua Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, Hunan Province, China.
| | - Jian-Hong Jiang
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Yan-Hua Lei
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, Hunan Province, China.
| | - Xu Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Fei-Hong Yao
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Meng-Han Ji
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Kai-Wen Zhang
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Li-Ming Tao
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Li-Juan Ye
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Qiang-Guo Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, Hunan Province, China
| |
Collapse
|
9
|
Heydari N, Bikas R, Shaterian M, Lis T. Green solvent free epoxidation of olefins by a heterogenised hydrazone-dioxidotungsten(vi) coordination compound. RSC Adv 2022; 12:4813-4827. [PMID: 35425511 PMCID: PMC8981271 DOI: 10.1039/d1ra09217k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
A new mononuclear tungsten coordination compound, [WO2L(CH3OH)] (1), was synthesized by the reaction of WCl6 and H2L (H2L = (E)-4-amino-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide) in methanol. Both the H2L and compound 1 were characterized by elemental analysis and UV-Vis, FT-IR and NMR spectroscopic methods. The molecular structure of compound 1 was also determined by single crystal X-ray analysis which confirmed the compound is a mononuclear coordination compound of cis-dioxidotungsten(vi) containing a free amine functionality on the ligand. Compound 1 was supported on propionyl chloride-functionalized silica gel by amidification reaction to obtain a heterogeneous catalyst. The obtained heterogeneous catalyst was characterized by FT-IR spectroscopy, thermal gravimetric analysis (TGA), diffuse-reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) and its catalytic activity was investigated in the epoxidation of olefins with hydrogen peroxide under solvent free conditions. The catalyst was successfully recovered several times and the recovered catalyst was also characterized by various methods including FT-IR, DRS, TGA, SEM and EDX analyses. The results indicated this heterogeneous catalytic system is an effective and selective catalyst for epoxidation of olefins and can be reused several times without significant change in its catalytic activity.
Collapse
Affiliation(s)
- Neda Heydari
- Department of Chemistry, Faculty of Science, University of Zanjan 45371-38791 Zanjan Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University 34148-96818 Qazvin Iran
| | - Maryam Shaterian
- Department of Chemistry, Faculty of Science, University of Zanjan 45371-38791 Zanjan Iran
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw Joliot-Curie 14 Wroclaw 50-383 Poland
| |
Collapse
|
10
|
Molecular structure and catalytic activity of Fe(III) coordination compound with ONO-donor hydrazone ligand in the oxidation of cyclooctene by H2O2. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131774] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|