Borah R, Lahkar S, Deori N, Brahma S. Synthesis, characterization and application of oxovanadium(iv) complexes with [NNO] donor ligands: X-ray structures of their corresponding dioxovanadium(v) complexes.
RSC Adv 2022;
12:13740-13748. [PMID:
35541435 PMCID:
PMC9076100 DOI:
10.1039/d2ra01448c]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Two oxovanadium(iv) complexes ligated by [NNO] donor ligands have been synthesized and characterized by ESI-HRMS, elemental (CHN) analysis and spectroscopic (UV-Vis, IR and EPR) techniques. Block shaped brown crystals from the methanolic solutions of these oxovanadium(iv) complexes were obtained during the crystallization process. Crystallographic structures of the resulting crystals revealed that the original oxovanadium(iv) complexes have been transformed into new dioxovanadium(v) complexes with concomitant oxidation of VIV to VV. The original oxovanadium(iv) complexes have been identified to be an efficient catalyst for the CO2 cycloaddition reaction with epoxides resulting up to 100% cyclic carbonate products. The geometries of oxovanadium(iv) complexes are optimized by the density functional theory (DFT) calculations at the uB3LYP/6-31G**/LANL2DZ level of theory. The geometry and structural parameters of optimized structures of oxovanadium(iv) complexes are in excellent agreement with the parameters of X-ray structures of their dioxovanadium(v) counterparts. Further, TD-DFT and Spin Density Plots for the oxovanadium(iv) complexes are performed in order to get more insights about their electronic absorption and EPR spectroscopies, respectively.
Collapse