Pan T, Liu FS, Lin H, Zhou Y. Anti-biofilm studies of synthetic imidazolium salts on dental biofilm in vitro.
J Oral Microbiol 2022;
14:2075309. [PMID:
35600163 PMCID:
PMC9116249 DOI:
10.1080/20002297.2022.2075309]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective
Biofilm formation under cariogenic conditions contributes to dental caries development, in which Streptococcus mutans (S. mutans) is regarded as the major cariogenic bacteria. Here, we synthesized a series of imidazolium salts. Their properties of antimicrobial and anti-biofilm were investigated.
Methods
The microdilution method crystal violet staining, and cell counting Kit-8 assay were used to screen imidazolium salts. Then, the bacterial composition in multi-species biofilm composed of S. mutans, Actinomyces naeslundii, and Streptococcus gordonii was quantified by quantitative PCR. The exopolysaccharide and morphology of the structure of multi-species biofilm were further observed by confocal laser scanning microscopy and scanning electron microscope, respectively.
Results
Imidazolium salts exhibited highly antimicrobial activity against oral pathogens, especially for S. mutans . Compounds with ortho-diisopropyl and para-methoxyl on N-moieties as well as bearing ancenaphthyl skeleton (C5) showed the lowest cytotoxicity and most efficient anti-biofilm activity. C5 inhibited approximately 50% of multi-species biofilm at 0.98 μg/mL. Notably, C5 resulted in 98.97% live S. mutans and 77.65% A. naeslundii decreased. Furthermore, the exopolysaccharide was reduced by 88%, along with a sparse and scattered microstructure.
Conclusion
The imidazolium salts present low cytotoxicity and remarkable antimicrobial activity against S. mutans in multi-species biofilm, suggesting that they may have a great potential in anti-biofilm clinical applications.
Collapse