1
|
Geer AM, Navarro J, Alamán-Valtierra P, Coles NT, Kays DL, Tejel C. Homotropic Cooperativity in Iron-Catalyzed Alkyne Cyclotrimerizations. ACS Catal 2023; 13:6610-6618. [PMID: 37229435 PMCID: PMC10204060 DOI: 10.1021/acscatal.3c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Indexed: 05/27/2023]
Abstract
Enhancing catalytic activity through synergic effects is a current challenge in homogeneous catalysis. In addition to the well-established metal-metal and metal-ligand cooperation, we showcase here an example of self-activation by the substrate in controlling the catalytic activity of the two-coordinate iron complex [Fe(2,6-Xyl2C6H3)2] (1, Xyl = 2,6-Me2C6H3). This behavior was observed for aryl acetylenes in their regioselective cyclotrimerization to 1,2,4-(aryl)-benzenes. Two kinetically distinct regimes are observed dependent upon the substrate-to-catalyst ratio ([RC≡CH]0/[1]0), referred to as the low ([RC≡CH]0/[1]0 < 40) and high ([RC≡CH]0/[1]0 > 40) regimes. Both showed sigmoidal kinetic response, with positive Hill indices of 1.85 and 3.62, respectively, and nonlinear Lineweaver-Burk replots with an upward curvature, which supports positive substrate cooperativity. Moreover, two alkyne molecules participate in the low regime, whereas up to four are involved in the high regime. The second-order rate dependence on 1 indicates that binuclear complexes are the catalytically competent species in both regimes, with that in the high one being 6 times faster than that involved in the low one. Moreover, Eyring plot analyses revealed two different catalytic cycles, with a rate-determining step more endergonic in the low regime than in the high one, but with a more ordered transition state in the high regime than in the low one.
Collapse
Affiliation(s)
- Ana M. Geer
- Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH), Departamento de Química Inorgánica, Facultad
de Ciencias, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Janeth Navarro
- Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH), Departamento de Química Inorgánica, Facultad
de Ciencias, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Pablo Alamán-Valtierra
- Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH), Departamento de Química Inorgánica, Facultad
de Ciencias, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Nathan T. Coles
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Deborah L. Kays
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Cristina Tejel
- Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH), Departamento de Química Inorgánica, Facultad
de Ciencias, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Féo M, Bakas NJ, Radović A, Parisot W, Clisson A, Chamoreau LM, Haddad M, Ratovelomanana-Vidal V, Neidig ML, Lefèvre G. Thermally Stable Redox Noninnocent Bathocuproine-Iron Complex for Cycloaddition Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Bresciani G, Schoch S, Biancalana L, Zacchini S, Bortoluzzi M, Pampaloni G, Marchetti F. Cyanide-alkene competition in a diiron complex and isolation of a multisite (cyano)alkylidene-alkene species. Dalton Trans 2022; 51:1936-1945. [PMID: 35022627 DOI: 10.1039/d1dt03781a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The μ-(amino)alkylidyne complex [Fe2Cp2(CO)2(μ-CO){μ-CNMe(CH2CHCH2)}]CF3SO3, [1]CF3SO3, reacted with NBu4CN in dichloromethane affording the μ-(cyano)(amino)alkylidene [Fe2Cp2(CO)2(μ-CO){μ-C(CN)N(Me)(CH2CHCH2)}], 2, in 91% yield. Decarbonylation of 2 by using Me3NO in acetone at room temperature yielded [Fe2Cp2(CO)(μ-CO){μ-κ3C-C(CN)N(Me)(CH2CHCH2)}], 3, containing a multidentate alkylidene-alkene ligand occupying both a bridging site and a terminal site, in admixture with the μ-(amino)alkylidyne cyanide product [Fe2Cp2(CN)(CO)(μ-CO){μ-CN(Me)(CH2CHCH2)}], 4. The reaction of the μ-(amino)alkylidyne imine complex [Fe2Cp2(CO)(μ-CO)(NHCPh2){μ-CN(Me)(CH2CHCH2)}]CF3SO3, [7]CF3SO3, with NBu4CN gave 3 with an optimized yield of 75% via imine elimination. According to DFT calculations, 3 is less stable than its geometric isomer 4 by 13.4 kcal mol-1 and quantitative conversion to 4 was achieved by refluxing a THF solution of 3 for 2 hours. No replacement of alkene coordination occurred upon treating 3 with CO or PPh3. The previously unknown compounds 2, 3, 4 and [7]CF3SO3 were fully characterized by analytical and spectroscopic techniques and the structure of 3 was elucidated by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.,CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy.
| | - Silvia Schoch
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.,CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy.
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.,CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy.
| | - Stefano Zacchini
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy. .,University of Bologna, Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Bortoluzzi
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy. .,University of Venezia "Ca' Foscari", Department of Molecular Science and Nanosystems, Via Torino 155, I-30170 Mestre, VE, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.,CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy.
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.,CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy.
| |
Collapse
|