1
|
Singh J, Gautam S, Singh MB, Singh P, Kumar U. Synthesis, DFT, Molecular Docking, and Antimicrobial Studies of New Indole-Thiosemicarbazone Ligand and Their Complexes with Fe(III), Co(II), Ni(II), Cu(II). Chem Biodivers 2024:e202401301. [PMID: 39238270 DOI: 10.1002/cbdv.202401301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Indole-3-carbaldehyde based novel ligand (E)-2-((1-benzyl-1H-indol-3-yl)methylene)-N-methylhydrazine-1-carbothioamide (MBIHC) and its metal complexes [(MBIHC)2FeCl2]Cl(C1), [(MBIHC-)2Co] (C2), [(MBIHC-)2Ni] (C3), and [(MBIHC-)2Cu] (C4) have been synthesized. All synthesized compounds have been characterized by various spectroanalytical techniques. The structure of MBIHC was confirmed by single-crystal X-ray data. The geometry of metal complexes was determined by spectroscopic and computational studies. In the case of iron complex, ligand MBIHC coordinated to the metal ion in bidentate mode (via nitrogen, sulphur donor atoms) while in the case of cobalt, nickel, and copper complexes ligand act as a tridentate ligand (via nitrogen, sulphur, carbene donor atoms). In vitro, antifungal and antibacterial studies of ligand and metal complexes were assayed against C. albicans, C. glabrata, E. coli, and K. pneumoniae pathogens. In antifungal activity, complex C1 exhibited a greater inhibition zone than the other compounds for the both examined fungi C. albicans (24±0.32 mm) and C. glabrata (20±0.16 mm). However, the antifungal activities of complex C2 has shown better activity against both E. coli (25±0.24 mm) and K. pneumoniae (16±0.80 mm) pathogens than the other examined compound. Complex C2 has found even better than the benchmark drug Ampiciline in case of E. coli. Further, the DFT calculations and molecular docking studies also validate the experimental bioactivity results of examined compounds.
Collapse
Affiliation(s)
- Jugmendra Singh
- Catalysis and bio-inorganic research laboratory, Department of Chemistry, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Seema Gautam
- Catalysis and bio-inorganic research laboratory, Department of Chemistry, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Madhur B Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, 110021, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, 110021, India
| | - Umesh Kumar
- Catalysis and bio-inorganic research laboratory, Department of Chemistry, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| |
Collapse
|
2
|
Gatto CC, Dias LM, Paiva CA, da Silva ICR, Freire DO, Tormena RPI, Nascimento ÉCM, Martins JBL. Effects of changing ions on the crystal design, non-covalent interactions, antimicrobial activity, and molecular docking of Cu(II) complexes with a pyridoxal-hydrazone ligand. Front Chem 2024; 12:1347370. [PMID: 38361747 PMCID: PMC10867249 DOI: 10.3389/fchem.2024.1347370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
The present work reports the influence of the presence of different ions (Cl-, Br-, NO3 -, or SO4 2-) on the formation and proprieties of Cu(II) complexes with pyridoxal-benzoylhydrazone (PLBHZ). Four new complexes were successfully synthesized, [CuCl2(PLBHZ)] (1), [CuBr2(PLBHZ)] (2), [CuCl(PLBHZ)H2O]⋅NO3⋅H2O (3), and [CuSO4(PLBHZ)H2O]⋅3H2O (4), and characterized by spectroscopic and physicochemical methods. A single-crystal X-ray study reveals the Schiff base coordinated to the metal center tridentate by the ONS-donor system, resulting in distorted square pyramidal coordination geometries. Noncovalent interactions were investigated by 3D Hirshfeld surface analysis by the d norm function, 2D fingerprint plots, and full interaction maps. The ion exchange is important in forming three-dimensional networks with π⋅⋅⋅π stacking interactions and intermolecular hydrogen bonds. The in vitro biological activity of the free ligand and metal complexes was evaluated against Gram-positive and Gram-negative bacterial strains and the free pyridoxal-hydrazone ligand showed higher activity than their Cu(II) complexes. Molecular docking was used to predict the inhibitory activity of the ligand and complexes against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria.
Collapse
Affiliation(s)
- Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography, Institute of Chemistry, University of Brasilia, Brasília-DF, Brazil
| | - Lucas M. Dias
- Laboratory of Inorganic Synthesis and Crystallography, Institute of Chemistry, University of Brasilia, Brasília-DF, Brazil
| | - Clarisse A. Paiva
- Laboratory of Inorganic Synthesis and Crystallography, Institute of Chemistry, University of Brasilia, Brasília-DF, Brazil
| | - Izabel C. R. da Silva
- Graduate Program in Health Sciences and Technologies, Faculty UnB Ceilândia, University of Brasilia, Brasília-DF, Brazil
| | - Daniel O. Freire
- Graduate Program in Health Sciences and Technologies, Faculty UnB Ceilândia, University of Brasilia, Brasília-DF, Brazil
| | - Renata P. I. Tormena
- Graduate Program in Health Sciences and Technologies, Faculty UnB Ceilândia, University of Brasilia, Brasília-DF, Brazil
| | - Érica C. M. Nascimento
- Laboratory of Computational Chemistry, Institute of Chemistry, University of Brasilia, Brasília-DF, Brazil
| | - João B. L. Martins
- Laboratory of Computational Chemistry, Institute of Chemistry, University of Brasilia, Brasília-DF, Brazil
| |
Collapse
|
3
|
La YT, Du MX, Gan LL, Zhang Y, Sun YX, Dong WK. Spectroscopic and theoretical studies on a novel bis(salamo)-like probe for highly effective fluorimetric-colorimetric identification of Fe 3+ and Cu 2+ in aquo-organic medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123481. [PMID: 37804710 DOI: 10.1016/j.saa.2023.123481] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
A novel bis(salamo)-type sensor FT for fluorescence-colorimetric recognition of Fe3+/Cu2+ has been created, which revealed significant fluorescent performance and colorimetric sensing ability for Cu2+ and Fe3+ ions, superior to other related competitive metal ions. Interestingly, the binding of the FT probe with Cu2+ ions manifested an instant color change from colorless to red in sunlight, which is detectable by the naked-eye, and a fluorescence turn-off response under UV light for Fe3+ and Cu2+. The results demonstrated that the probe exhibits better sensitivity, greater affinity and lower limit of detection leading to quick response time in an aquo-organic medium. The excited state property of the FT probe and in the presence of Cu2+/Fe3+ was evaluated on the basis of DFT & TD-DFT results. Furthermore, test strips have been provided for convenient monitoring of Cu2+ and Fe3+ ions by naked eye and fluorescence method.
Collapse
Affiliation(s)
- Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ming-Xia Du
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lu-Lu Gan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
4
|
La YT, Yan YJ, Gan LL, Zhang Y, Dong WK, Ding YJ. A fluorescent Salamo-Salen-Salamo-Zn(II) sensor for bioimaging and biosensing H 2PO 4- in Zebrafish and plants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123159. [PMID: 37478709 DOI: 10.1016/j.saa.2023.123159] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
A newly designed and synthesized Salamo-Salen-Salamo-Zn(II) complex sensor (sensor ZT) was extensively explored for anion sensing studies. The selectivity and sensitivity of the sensor ZT towards H2PO4- ions were based on ICT and CHEF effects, and via displacement pathways in DMSO/H2O (9:1, v/v) medium in the presence of other anions like, PO43-, HPO42- and P2O74- in a short time, separately. The prepared ZT sensor has excellent association constant and low detection lines. The sensing mechanism and binding mode of the sensor were studied by UV-Vis spectroscopy, HR-MS, 1H NMR titration and theory calculations (DFT & TD-DFT) for analytes. The time response and stability of the sensor are also given. Meanwhile, the sensor ZT can be widely used as a simple and effective solid-state optical sensor to detect H2PO4- by intuitive fluorescence changes. In addition, besides the environment can be used as a powerful instrument for detecting H2PO4-, based on the good biocompatibility and tissue permeability of ZT, effectively monitoring H2PO4- in cellular distribution by confocal microscopy using Zebrafish and bean sprout.
Collapse
Affiliation(s)
- Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Lu-Lu Gan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Yu-Jie Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
5
|
Alorini T, Al-Hakimi AN, Daoud I, Alminderej F, Albadri AEAE, Aroua L. Synthesis, characterization, anticancer activity and molecular docking of metal complexes bearing a new Schiff base ligand. J Biomol Struct Dyn 2023; 41:10969-10984. [PMID: 36961125 DOI: 10.1080/07391102.2023.2191725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/10/2022] [Indexed: 03/25/2023]
Abstract
2-((E)-((4-(((E)-4-Nitrobenzylidene)amino)phenyl)imino)methyl)naphthalen-1-ol, was synthesised followed by metalation with Fe(III), Co(III), Cu(II), Zn(II) and Ni(II) metals. The compounds were characterised by different methods CHN, AAS, IR, NMR, XRD, TGA and UV-Vis. The results reveal that the ligand has bidentate behavior, and it is bound with metals by a coordination bond through both the nitrogen atom of the azomethine group and the oxygen atom, this provided an octahedral geometry. The X-ray diffraction of the compounds indicate that the ligands and complexes of Co(III), Fe(III) and Zn(II) have a crystalline nature, whereas the Ni(II) and Cu(II) have an amorphous structure. The agar diffusion method (hole plate) was used to evaluate the ligand's and its complexes' antibacterial and antifungal effects on Salmonella enterica serovar typhi and Candida albicans, respectively. It was observed that the Fe(III) complex had the best activity among the compounds against microbial strains. Cytotoxicity of new metal complexes was also assessed against A549, HepG-2 and PC-3 cancer cells. Results demonstrated that the Cu(II) complex displayed the preeminent activity among the synthesised compounds against all the tested cell lines. Furthermore, molecular docking simulation revealed that the Fe(III) complex is shown to have a high affinity with the active sites of two targets of microbial strains. Also, the Cu(II) complex shown to has a high affinity with the active sites of three targets of A-549, HepG-2 and PC-3 cancer cells, which was confirmed by the formation of the different modes of interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thamer Alorini
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed N Al-Hakimi
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
- Department of Chemistry, College of Sciences, Ibb University, Ibb, Yemen
| | - Ismail Daoud
- Faculty of Science, Department of Chemistry, Laboratory of Natural Substances and Bioactive (LASNABIO), University Abou-Bakr Belkaid, Tlemcen, Algeria
- Department of Matter Sciences, University of Mohamed Khider Biskra, Biskra, Algeria
| | - Fahad Alminderej
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Abuzar E A E Albadri
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Lotfi Aroua
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
- Laboratory of Organic Structural Chemistry & Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, Tunis, Tunisia
| |
Collapse
|
6
|
Villaman D, Vega A, Santa Maria de la Parra L, León IE, Levín P, Toro PM. Anticancer activity of Ni(II) and Zn(II) complexes based on new unsymmetrical salophen-type ligands: synthesis, characterization and single-crystal X-ray diffraction. Dalton Trans 2023; 52:10855-10868. [PMID: 37486008 DOI: 10.1039/d3dt00800b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The discovery of new coordination compounds with anticancer properties is an active field of research due to the severe side effects of platinum-based compounds currently used in chemotherapy. In the search for new agents for the treatment of cancer, unsymmetrical N2O2-tetradentate ligand (H2L1 and H2L2) and their Ni(II) and Zn(II) asymmetric complexes (NiII-L1-2 and ZnII-L1-2) have been synthesized and fully characterized. 1H NMR studies revealed that the ligands and complexes were stable in mixtures of DMSO : D2O (9 : 1). Complementary UV-Vis studies confirmed that ZnII derivatives also exhibit high stability in mixtures DMSO : buffer (6 : 4) after 24 h. Single-crystal X-ray diffraction studies confirmed the molecular structures of H2L1, H2L2, NiII-L1, and NiII-L2. At the molecular level, complexes were completely planar without significant distortions of the square-planar geometry according to τ4 parameter. Furthermore, the crystalline structures revealed non-classical intermolecular interactions of the C-H⋯O and the Ni⋯Ni type. The ligands and complexes were screened against the human osteosarcoma (MG-63), human colon cancer (HCT-116), breast cancer (MDA-MB-231) cell lines, and non-cancerous cells (L929). H2L1 and H2L2 ligands not caused cytotoxic effects at a concentration of 100 μM, while NiII-L2, ZnII-L1, and ZnII-L2 complexes induce cytotoxic effects in all cell lines. NiII-L2 was a more active complex against MG-63 (3.9 ± 1.5) and HCT-116 (3.4 ± 1.7) cell lines with IC50 values in the low micromolar range. In addition, this compound was 10-, 5-, and 11-fold more potent than cisplatin in MG-63 (39 ± 1.8), HCT-116 (17.2), and MDA-MB-231 (131 ± 18), respectively. Three complexes exhibited great selectivity for tumoral cells with SI values ranging from 1.6 to 7.4.
Collapse
Affiliation(s)
- David Villaman
- Laboratorio de Química Inorgánica y Organometálica, Facultad de Cs. Química, Universidad de Concepción, Chile.
| | - Andrés Vega
- Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Av. República 498, Santiago, Chile
| | - Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata 1900, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata 1900, Argentina
| | - Pedro Levín
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Patricia M Toro
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
7
|
La YT, Yan YJ, Li X, Zhang Y, Sun YX, Dong WK. Coordination-Driven Salamo-Salen-Salamo-Type Multinuclear Transition Metal(II) Complexes: Synthesis, Structure, Luminescence, Transformation of Configuration, and Nuclearity Induced by the Acetylacetone Anion. Inorg Chem 2023. [PMID: 37311103 DOI: 10.1021/acs.inorgchem.3c01149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A flexible polydentate Salamo-Salen-Salamo hybrid ligand H4L was designed and synthesized, which has rich pockets (salamo and salen pockets) so that it may have fascinating coordination patterns with transition metal(II) ions. Four multinuclear transition metal(II) complexes, novel butterfly-shaped homotetranuclear [Ni4(L)(μ1-OAc)2(μ1,3-OAc)2(H2O)0.5(CH3CH2OH)3.5]·4CH3CH2OH (1), helical homotrinuclear [Zn3(L)(μ1-OAc)2]·2CH3CH2OH (2), double-helical homotrinuclear [Cu2(H2L)2]·2CH3CN (3), and mononuclear [Ni(H2L)]·1.5CH3COCH3 (4), have been synthesized and characterized by single-crystal X-ray diffraction. The effects of different anions [OAc- and (O2C5H7)2-] on the complexation behavior of H4L with transition metal(II) ions were studied by UV-vis spectrophotometry. The fluorescent properties of the four complexes were studied with zebrafish, which are expected to be a potential light-emitting material. Ultimately, interaction region indicator (IRI) valuations, Hirshfeld surface analyses, density functional theory (DFT & TD-DFT), electrostatic potential analyses (ESP), and simulations were carried out to further demonstrate the weak interactions and electronic properties of the free ligand and its four complexes.
Collapse
Affiliation(s)
- Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Xun Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| |
Collapse
|
8
|
Jiang J, Liang P, Li A, Xue Q, Yu H, You Z. Synthesis, Crystal Structures and Urease Inhibition of Zinc(II) and Copper(II) Complexes Derived from 2-Amino-N′-(1-(Pyridin-2-yl) Ethylidene)Benzohydrazide. J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
9
|
Li M, Qiu XY, Zheng ZX, Wu YJ. Syntheses and Crystal Structures of Copper(II) and Zinc(II) Complexes Derived from 5-Bromo-2-((Cyclopropylimino)Methyl)Phenol with Antibacterial Activity. J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
10
|
Sangwan V, Singh DP. Macrocyclic complexes as potent biomaterial: an experimental study on synthesis, spectroscopic analysis, antioxidant and antimicrobial activity. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Jevtović V, Hamoud H, Al-Zahrani S, Alenezi K, Latif S, Alanazi T, Abdulaziz F, Dimić D. Synthesis, Crystal Structure, Quantum Chemical Analysis, Electrochemical Behavior, and Antibacterial and Photocatalytic Activity of Co Complex with Pyridoxal-(S-Methyl)-isothiosemicarbazone Ligand. Molecules 2022; 27:4809. [PMID: 35956756 PMCID: PMC9369583 DOI: 10.3390/molecules27154809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/17/2023] Open
Abstract
New complex Co(III) with ligand Pyridoxal-S-methyl-isothiosemicarbazone, (PLITSC) was synthesized. X-ray analysis showed the bis-ligand octahedral structure of the cobalt complex [Co(PLITSC-H)2]BrNO3·CH3OH (compound 1). The intermolecular interactions governing the crystal structure were described by the Hirsfeld surface analysis. The structure of compound 1 and the corresponding Zn complex (([Zn(PLTSC)(H2O)2]SO4·H2O)) were optimized at the B3LYP/6-31 + G (d,p)/LanL2DZ level of theory, and the applicability was assessed by comparison with the crystallographic structure. The natural bond orbital analysis was used for the discussion on the stability of formed compounds. The antibacterial activity of obtained complexes towards S. aureus and E. coli was determined, along with the effect of compound 1 on the formation of free radical species. Activity of compound 1 towards the removal of methylene blue was also investigated. The voltammograms of these compounds showed the reduction of metal ions, as well as the catalyzed reduction of CO2 in acidic media.
Collapse
Affiliation(s)
- Violeta Jevtović
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Haneen Hamoud
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Salma Al-Zahrani
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Khalaf Alenezi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Tahani Alanazi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
KAYA B. An Iron(III)-S-methylthiosemicarbazone Complex: Synthesis, Spectral Characterization, and Antioxidant Potency Measured by CUPRAC and DPPH Methods. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1058398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
An iron(III) complex, [Fe(L1)Cl].H2O, was synthesized by template condensation reaction of 1,1,1-Trifluoroacetylacetone-S-methylthiosemicarbazone hydrogen iodide (L) and 2,3-dihydroxybenzaldehyde in the presence of iron(III) ions. The complex was characterized by IR, ESI MS and X-ray diffraction techniques. Free radical scavenging (FRS) ability and antioxidant capacity of the S-methylthiosemicarbazone and the iron(III) complex were evaluated through DPPH and CUPRAC methods, respectively. The complex exerted better than the S-methylthiosemicarbazone in both TEAC and FRS% values. In addition, iron(III) complex was found to be 3.1 times more antioxidant than the reference ascorbic acid according to the CUPRAC method.
Collapse
Affiliation(s)
- Büşra KAYA
- İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA, MÜHENDİSLİK FAKÜLTESİ
| |
Collapse
|
13
|
Xiao YH, Wu HY, Sun C, Hou JL. SYNTHESIS, CRYSTAL STRUCTURES AND BIOLOGICAL ACTIVITY OF TRINUCLEAR NICKEL(II) AND COPPER(II) COMPLEXES DERIVED FROM N,N′-BIS(4-BROMOSALICYLIDENE)- 1,3-PENTANEDIAMINE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Pandey M, Jadav D, Manhas A, Kediya S, Tsunoji N, Kumar R, Das S, Bandyopadhyay M. Synthesis and characterization of mononuclear Zn complex, immobilized on ordered mesoporous silica and their tunable catalytic properties. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Chowdhury MS, Gumus S, Dasgupta S, Majumder I, Bhattacharya A, Das D, Mukhopadhyay J, Bose D, Dasgupta S, Akinay Y, Mukhopadhyay M. Supramolecular Arrangement and DFT analysis of Zinc(II) Schiff Bases: An Insight towards the Influence of Compartmental Ligands on Binding Interaction with Protein. ChemistryOpen 2022; 11:e202200033. [PMID: 35642135 PMCID: PMC9156808 DOI: 10.1002/open.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
We report, for the first time, a detailed crystallographic study of the supramolecular arrangement for a set of zinc(II) Schiff base complexes containing the ligand 2,6-bis((E)-((2-(dimethylamino)ethyl)imino)methyl)-4-R-phenol], where R=methyl/tert-butyl/chloro. The supramolecular study acts as a pre-screening tool for selecting the compartmental ligand R of the Schiff base for effective binding with a targeted protein, bovine serum albumin (BSA). The most stable hexagonal arrangement of the complex [Zn-Me] (R=Me) stabilises the ligand with the highest FMO energy gap (ΔE=4.22 eV) and lowest number of conformations during binding with BSA. In contrast, formation of unstable 3D columnar vertebra for [Zn-Cl] (R=Cl) tend to activate the system with lowest FMO gap (3.75 eV) with highest spontaneity factor in molecular docking. Molecular docking analyses reported in terms of 2D LigPlot+ identified site A, a cleft of domains IB, IIIA and IIIB, as the most probable protein binding site of BSA. Arg144, Glu424, Ser428, Ile455 and Lys114 form the most probable interactions irrespective of the type of compartmental ligands R of the Schiff base whereas Arg185, Glu519, His145, Ile522 act as the differentiating residues with ΔG=-7.3 kcal mol-1 .
Collapse
Affiliation(s)
- Megha Sen Chowdhury
- Department of ChemistryAmity Institute of Applied Sciences (AIAS)Amity University700156KolkataIndia
| | - Selcuk Gumus
- Van Yuzuncu Yil UniversityDepartment of ChemistryFaculty of Science4445065VanTurkey
| | - Sanchari Dasgupta
- Department of ChemistryUniversity of Calcutta92, A. P. C. Road700 009KolkataWest BengalIndia
- Institut Lavoisier de VersaillesUMR CNRS 8180Universailles St-Quentin-en-YvelinesUniversite Paris-Saclay78035Versailles CedexFrance
| | - Ishani Majumder
- Department of ChemistryUniversity of Calcutta92, A. P. C. Road700 009KolkataWest BengalIndia
| | - Abir Bhattacharya
- Department of PhysicsThe Bhawanipur Education Society CollegeUniversity of Calcutta700020KolkataIndia
| | - Debasis Das
- Department of ChemistryUniversity of Calcutta92, A. P. C. Road700 009KolkataWest BengalIndia
| | - Jayanta Mukhopadhyay
- Energy Materials & Devices DivisionCSIR-Central Glass and Ceramic Research Institute700 032KolkataIndia
| | - Debosreeta Bose
- Department of ChemistryAmity Institute of Applied Sciences (AIAS)Amity University700156KolkataIndia
| | - Saumya Dasgupta
- Department of ChemistryAmity Institute of Applied Sciences (AIAS)Amity University700156KolkataIndia
| | - Yuksel Akinay
- Van Yuzuncu Yil UniversityDepartment of MiningEngineering Faculty4445065VancityTurkey
| | - Madhumita Mukhopadhyay
- Department of ChemistryAmity Institute of Applied Sciences (AIAS)Amity University700156KolkataIndia
- Present AffiliationDepartment of Materials Science & TechnologySchool of Applied Science & TechnologyMaulana Abul Kalam Azad University of Technology (MAKAUT)741249NadiaWest BengalIndia
| |
Collapse
|
16
|
He Q, Ma P, Torshizi R. The Impact of Some Natural Phenolic Compounds on α-Glucosidase and Sorbitol Dehydrogenase Enzymes, and Anti-leukemia Cancer Potential, Spin Density Distributions, and in silico Studies. J Oleo Sci 2022; 71:863-873. [PMID: 35584958 DOI: 10.5650/jos.ess22029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, some phenolic compounds including 4-Hexylresorcinol, 5-Pentadecylresorcinol, 5-Tricosylresorcinol, Bilobol, and Urushiol were tested against α-glycosidase enzyme from Saccharomyces cerevisiae and sorbitol dehydrogenase enzymes from sheep liver. These compounds determined good inhibition properties against α-glycosidase and sorbitol dehydrogenase (SDH) enzymes. IC50 values were record in the range of 1.45±0.20-24.532±3.83 μM for α-glycosidase and 6.20±0.96-108.22±18.02 μM for SDH. These inhibitor compounds can be selective drug candidates as anti-diabetic agents, because of they have inhibition properties against both enzymes. In this study, the anti-oxidant activities of the molecules were compared with density functional theory (DFT) calculations. Comparison was made with the experimental enzymes by molecular modeling calculations. In the cellular and molecular part of the recent study, the treated cells with some phenolic compounds were assessed by molecularly targeted therapy (MTT) assay for cytotoxicity and anti-acute lymphoblastic leukemia potentials on Clone 15 HL-60, HL-60, HL-60/MX1, and HL-60/MX2 cell lines. The IC50 of these compounds were µg/mL level against these cell lines.
Collapse
Affiliation(s)
- Qiulian He
- Department of Hematology, Nanchong Central Hospital, The second Clinical Medical College of North Sichuan Medical Colledge
| | - Peng Ma
- Otolaryngology head and Neck Sugery, Nanchong Central Hospital, The second Clinical Medical College of North Sichuan Medical Colledge
| | - Ramin Torshizi
- Biochemistry graduate, Department of Biology, Faculty of Basic Sciences, Islamic Azad University Science and Research Branch
| |
Collapse
|
17
|
Najarianzadeh M, Tarahhomi A, Pishgo S, van der Lee A. Experimental and theoretical study of novel amino-functionalized P(V) coordination compounds suggested as inhibitor of M Pro of SARS-COV-2 by molecular docking study. Appl Organomet Chem 2022; 36:e6636. [PMID: 35538930 PMCID: PMC9073987 DOI: 10.1002/aoc.6636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/18/2023]
Abstract
Amino-functionalized P(V) derivatives providing both N- and O-donor modes have attracted interest owing to their potential to form interesting coordination assemblies with applications such as biological drugs. Novel coordination modes of two- and four-dentate tris (pyridin-2-yl)phosphoric triamide OP[NH-2Py]3 as ([Co(II){[O][NH-2Py]P(O)[Ph]}2(DMF)2], 1) and ([Cu(II)Cl{[NH-2Py]2P(O)[N-2Py]}].DMF, 2) have been synthesized and structurally studied. The metal center environment is distorted octahedral for 1 and distorted square pyramidal for 2. The crystal structure of a new complex of Cu(II) with a Cu[N]4[Cl]2 environment ([Cu(II)Cl2(Pyrazole)4], 3) is also investigated. An evaluation of the inhibitory effect against the coronavirus (Main Protease [MPro] of SARS-CoV-2) was carried out by a molecular docking study and illustrates that these compounds have a good interaction tendency with CoV-2, where 1 has the best binding affinity with the biological target comparable with other SARS-CoV-2 drugs. Moreover, theoretical QTAIM and natural bond orbital (NBO) calculations are used to evaluate the metal-oxygen/-nitrogen bonds suggesting that they are mainly electrostatic in nature with a slight covalent contribution. A molecular packing analysis using Hirshfeld surface (HS) analysis shows that N-H … O (in 1 and 2) and N-H … Cl (in 3) hydrogen bonds are the dominant interactions that contribute to the crystal packing cohesion. The semi-empirical PIXEL method indicates that the electrostatic and repulsion energy components in the structures of 1 and 2 and the dispersion and electrostatic components in that of 3 are the major contributors to the total lattice energy.
Collapse
|
18
|
Centro-symmetric paddlewheel copper(II) carboxylates: Synthesis, structural description, DNA-binding and molecular docking studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
İLHAN CEYLAN B. Oxovanadium(IV) template derived from benzophenone S-allyl thiosemicarbazone: Synthesis, crystal structure, antioxidant activity and electrochemistry. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.911318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|