1
|
Bora B, Das N, Bera A, Upadhyay A, Goswami TK. Fluorinated High-Valent Sn(IV) Porphyrins Show Remarkable Photodynamic Activity in Cancer Cells. ChemMedChem 2024; 19:e202400376. [PMID: 39017962 DOI: 10.1002/cmdc.202400376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
In recent years, Sn(IV) porphyrins have proven to be excellent choice as photosensitizers for photodynamic therapy. This work reports the synthesis, characterization and photodynamic activity of four high-valent fluorinated Sn(IV) porphyrins having different numbers of F-atoms in the peripheral of meso-phenyl groups viz. (Dichloro)meso-tetrakis(4-fluorophenylporphyrinato)stannic(IV), [Sn(IV)FTPP(Cl)2] or Sn1; (Dichloro)meso-tetrakis(2,4-difluorophenylporphyrinato)stannic(IV), [Sn(IV)2,4-FTPP(Cl)2] or Sn2; (Dichloro)meso-tetrakis(2,6-difluorophenylporphyrinato)stannic(IV), [Sn(IV)2,6-FTPP(Cl)2] or Sn3 and (Dichloro)meso-tetrakis(4-trifluoromethylphenylporphyrinato)stannic(IV), [Sn(IV)CF3TPP(Cl)2] or Sn4. The solid-state structure of Sn1 has been determined by single crystal X-ray diffraction analysis. The increasing number of F-atoms attached to the meso-phenyl positions of the porphyrin framework results in increase of their lipophilicity, singlet oxygen quantum yield (ΦΔ) and photocytotoxicity in A549 (human lung adenocarcinoma cells), MCF-7 and MDA-MB-231 (human breast adenocarcinoma) cells. Sn4 predominantly localize in the mitochondria of A549 cells. The light-induced cell death by the Sn(IV) porphyrins in A549 cells occur primarily via apoptosis.
Collapse
Affiliation(s)
- Bidisha Bora
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Namisha Das
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Tridib K Goswami
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| |
Collapse
|
2
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
3
|
Das A, Roy M, Saha M. Recent advances in biomedical applications of carbon and graphene quantum dots: A review. Biotechnol Bioeng 2024; 121:1469-1485. [PMID: 38548663 DOI: 10.1002/bit.28700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 01/03/2024] [Indexed: 04/14/2024]
Abstract
The carbon-based nanostructures have led to the development of theranostic nanoplatforms for simultaneous diagnosis and therapy due to their effective cell membrane-penetration ability, low degree of cytotoxicity, excellent pore volume, substantial chemical stability, and reactive surface. In the last few years, extensive efforts were made to design multifunctional nanoplatform strategies based on carbon nanostructures, involving multimodal imaging, controlled drug release capabilities, sensing in vitro, efficient drug loading capacity, and therapy. Carbon and graphene quantum dots (CQDs and GQDs) were the recent entrants, contingently being assessed for drug delivery and bioimaging. With the advancements, these quantum dots have ignited remarkable research interest and are now widely evaluated for diagnosis, bioimaging, sensing, and drug delivery applications. The last decade has witnessed their remarkable electrical, optical, and biocompatible properties since their inception. It is presumed that both of them have high potential as drug carriers and would serve as the next generation of approaches to address numerous unresolved therapeutic challenges. This review examined the recent advances of CQD and GQD based drug delivery applications, challenges, and future perspectives to pave the way for further studies in the future.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Chemistry, National Institute of Technology Agartala, Agartala, Tripura, India
| | - Manas Roy
- Department of Chemistry, National Institute of Technology Agartala, Agartala, Tripura, India
| | - Mitali Saha
- Department of Chemistry, National Institute of Technology Agartala, Agartala, Tripura, India
| |
Collapse
|
4
|
Jeskey J, Ding Y, Chen Y, Hood ZD, Sterbinsky GE, Jaroniec M, Xia Y. Single-Atom Catalysts for Selective Oxygen Reduction: Transition Metals in Uniform Carbon Nanospheres with High Loadings. JACS AU 2023; 3:3227-3236. [PMID: 38034958 PMCID: PMC10685421 DOI: 10.1021/jacsau.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Transition metal single-atom catalysts (SACs) in uniform carbon nanospheres have gained tremendous interest as electrocatalysts owing to their low cost, high activity, and excellent selectivity. However, their preparation typically involves complicated multistep processes that are not practical for industrial use. Herein, we report a facile one-pot method to produce atomically isolated metal atoms with high loadings in uniform carbon nanospheres without any templates or postsynthesis modifications. Specifically, we use a chemical confinement strategy to suppress the formation of metal nanoparticles by introducing ethylenediaminetetraacetic acid (EDTA) as a molecular barrier to spatially isolate the metal atoms and thus generate SACs. To demonstrate the versatility of this synthetic method, we produced SACs from multiple transition metals, including Fe, Co, Cu, and Ni, with loadings as high as 3.87 wt %. Among these catalytic materials, the Fe-based SACs showed remarkable catalytic activity toward the oxygen reduction reaction (ORR), achieving an onset and half-wave potential of 1.00 and 0.831 VRHE, respectively, comparable to that of commercial 20 wt % Pt/C. Significantly, we were able to steer the ORR selectivity toward either energy generation or hydrogen peroxide production by simply changing the transition metal in the EDTA-based precursor.
Collapse
Affiliation(s)
- Jacob Jeskey
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Yong Ding
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yidan Chen
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zachary D. Hood
- Applied
Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - George E. Sterbinsky
- Advanced
Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mietek Jaroniec
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| | - Younan Xia
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- The Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Akbar A, Khan S, Chatterjee T, Ghosh M. Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112796. [PMID: 37804542 DOI: 10.1016/j.jphotobiol.2023.112796] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
This comprehensive review provides the current trends and recent developments of porphyrin-based photosensitizers. We discuss their evolution from first-generation to third-generation compounds, including cutting-edge nanoparticle-integrated derivatives, and explores their pivotal role in advancing photodynamic therapy (PDT) for enhanced cancer treatment. Integrating porphyrins with nanoparticles represents a promising avenue, offering improved selectivity, reduced toxicity, and heightened biocompatibility. By elucidating recent breakthroughs, innovative methodologies, and emerging applications, this review provides a panoramic snapshot of the dynamic field, addressing challenges and charting prospects. With a focus on harnessing reactive oxygen species (ROS) through light activation, PDT serves as a minimally invasive therapeutic approach. This article offers a valuable resource for researchers, clinicians, and PDT enthusiasts, highlighting the potential of porphyrin photosensitizers to improve the future of cancer therapy.
Collapse
Affiliation(s)
- Alibasha Akbar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India
| | - Mihir Ghosh
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
6
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
7
|
Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya S, Kumar D. Metal-based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm (Beijing) 2023; 4:e253. [PMID: 37025253 PMCID: PMC10072971 DOI: 10.1002/mco2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Monu Kumar Shukla
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | | | | | - Rajiv K. Tonk
- School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research UniversityNew DelhiDelhiIndia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of Health, University of Technology SydneySydneyAustralia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneySydneyAustralia
| | - Faheem Ahmed
- Department of PhysicsCollege of ScienceKing Faisal UniversityAl‐HofufAl‐AhsaSaudi Arabia
| | | | - Deepak Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
8
|
Deng S, Zhang E, Tao J, Zhao Y, Huo W, Guo H, Zheng B, Mu X, Yuan K, Deng X, Shen H, Rong H, Ma Y, Bian W. Graphene quantum dots (GQDs) induce thigmotactic effect in zebrafish larvae via modulating key genes and metabolites related to synaptic plasticity. Toxicology 2023; 487:153462. [PMID: 36805088 DOI: 10.1016/j.tox.2023.153462] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
Graphene quantum dots (GQDs) recently gain much attention for its medicinal values in treating diseases such as neurodegeneration and inflammations. However, owing to the high permeability of GQDs across the blood-brain barrier, whether its retention in the central nervous system (CNS) perturbs neurobehaviors remains less reported. In the study, the locomotion of zebrafish larvae (Danio rerio) was fully evaluated when administrated by two GQDs in a concentration gradient, respectively as reduced-GQDs (R-GQDs): 150, 300, 600, 1200, and 2400 g/L, and graphene oxide QDs (GOQDs): 60, 120, 240, 480, and 960 g/L. After exposure, the larvae were kept for locomotion analysis within one week's depuration. Substantial data showed that the basal locomotor activity of zebrafish larvae was not significantly changed by both two GQDs at low concentrations while weakened greatly with the increase of concentrations, and the total ATP levels of zebrafish larvae were also found to decrease significantly when exposed to the highest concentrations of GQDs. Next, the thigmotactic effect was observed to be remarkably induced in larvae by both two GQDs at any concentrations during exposure, and remained strong in larvae treated by high concentrations of R-GQDs after 7 days' depuration. To be noted, we found that GQDs affected the synaptic plasticity via downregulating the mRNA levels of NMDA and AMPA receptor family members as well as the total glutamine levels in zebrafish larvae. Together, our study presented robust data underlying the locomotor abnormalities aroused by GQDs in zebrafish larvae and indicated the potential adverse effects of GQDs on synaptic plasticity.
Collapse
Affiliation(s)
- Shun Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China.
| | - Enming Zhang
- School of sports medicine and physical therapy, Beijing Sport University, Beijing 100084, China
| | - Junyu Tao
- School of sports medicine and health, Chengdu Sport University, Chengdu 610041, China
| | - Yunyang Zhao
- Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenbo Huo
- Chongqing institute of green and intelligent technology, Chinese Academy of Science, Chongqing 400714, China
| | - Hao Guo
- School of sports medicine and physical therapy, Beijing Sport University, Beijing 100084, China
| | - Bingxin Zheng
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Xiaoyuan Mu
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Kezhu Yuan
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Xuangen Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Hai Shen
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Haibo Rong
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Yanbo Ma
- Chongqing institute of green and intelligent technology, Chinese Academy of Science, Chongqing 400714, China
| | - Wanping Bian
- Chongqing institute of green and intelligent technology, Chinese Academy of Science, Chongqing 400714, China
| |
Collapse
|
9
|
Ledwaba MM, Magaela NB, Ndlovu KS, Mack J, Nyokong T, Managa M. Photophysical and in vitro photoinactivation of Escherichia coli using cationic 5,10,15,20-tetra(pyridin-3-yl) porphyrin and Zn(II) derivative conjugated to graphene quantum dots. Photodiagnosis Photodyn Ther 2022; 40:103127. [PMID: 36162756 DOI: 10.1016/j.pdpdt.2022.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Pathogenic microorganisms may continue causing infection through the transfer of antibiotic resistance genes. As a result, the efficacy of pharmaceuticals in microbial inactivation is deteriorating. The present study was conducted to investigate the antimicrobial activity of neutral and quaternized free base and Zn 5,10,15,20-tetra(pyridin-3-yl) porphyrins on Escherichia coli (E. coli), a gram-negative bacterium that causes cholecystitis, pneumonia and urinary tract infections. Conjugation of the porphyrin to graphene quantum dots (GQDs) was implemented to enhance photocatalysis and reactive oxygen species generation. Density functional theory (DFT) geometry optimizations for free base and Zn porphyrin based on the B3LYP (Becke 3-Parameter (Exchange), Lee, Yang and Parr) functional of the Gaussian09 program package and Time-dependent density-functional theory (TD-DFT) calculations of the associated UV-visible absorption spectra are reported to analyse the electronic structure and optical properties of the porphyrins. The TD-DFT calculations showed that for both porphyrins the value of highest occupied molecular orbital (ΔHOMO) is greater than that of lowest unoccupied molecular orbital (ΔLUMO) which tells that there is no unusual splitting of (LUMO) orbitals which may be caused by systematic error in TD-DFT calculations. Due to the red shift in the spectrum of ZnT(3-Py)P and the ΔLUMO being higher, the HOMO-LUMO gap was expected to be lower than that of H2T(3-Py)P. The photophysical properties and Photodynamic antimicrobial chemotherapy activities of these nanoconjugates were investigated. The highest ΦΔ was that of Q-ZnT(3-Py)P- GDQs at 0.69 with the log reduction of 9.42.
Collapse
Affiliation(s)
| | | | - Knowledge Siyabonga Ndlovu
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa.
| |
Collapse
|
10
|
Likhonina AE, Bryksina DA, Mamardashvili NZ. Fluorescent and Acid-Base Indicator Properties of Complexes Based on Sn(IV) Octaethylporphyrinate and Molecules of Dye: Phenolphthalein and 1,3,5,7-Tetramethyl-8-(4-hydroxyphenyl) (BODIPY). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Bridged Magaela N, Matshitse R, Managa M, Nyokong T. The effect of asymmetry and conjugation of biotin decorated nitrogen doped graphene quantum dots on morpholine porphyrin for photodynamic therapy. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2148103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Refilwe Matshitse
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| |
Collapse
|
12
|
pH indicator and rotary fluorescent properties of the Sn(IV)-octaetylporphyrin-(BODIPY)2 triad. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Makola LC, Nwahara N, Managa M, Nyokong T. Photodynamic therapy activity of 5,10,15-tris(5-bromo-2-thienyl),20(phenylcarboxy)porphyrin conjugated to graphene quantum dot against MCF-7 breast cancer cells. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2087515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lekgowa Collen Makola
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Nnamdi Nwahara
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| |
Collapse
|
14
|
Magaela NB, Matshitse R, Nyokong T. The effect of charge on Zn tetra morpholine porphyrin conjugated to folic acid-nitrogen doped graphene quantum dots for photodynamic therapy studies. Photodiagnosis Photodyn Ther 2022; 39:102898. [PMID: 35525434 DOI: 10.1016/j.pdpdt.2022.102898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 01/02/2023]
Abstract
Zinc tetra morpholine porphyrin (complex 2), and its quaternized derivative (complex 3) were synthesized and conjugated to folic acid nitrogen doped graphene quantum dots (FA-NGQDs) through π-π stacking to study their photodynamic therapy (PDT) efficacy. Photophysiochemical properties of complexes 2, 3, and their conjugates (2-FA-NGQDs, 3-FA-NGQDs) were studied. It was found that complex 3 had higher ϕΔ of 0.56 compared to complex 2 with ϕΔ of 0.24, and respective composites: 3-FA-NGQDs had higher ϕΔ compared to 2-FA-NGQDs. The PDT studies were conducted for nanoparticles (FA-NGQDs), complexes (2, 3), and respective composites (2-FA-NGQDs, and 3-FA-NGQDs) using MCF-7 breast cancer cell. Dark toxicity of all compounds was above 90% which is negligible. At a highest concentration of 40 µg/mL, 3-FA-NGQDs gave the lowest cell viability of 28% compared to all other conjugates and porphyrins alone.
Collapse
Affiliation(s)
- N Bridged Magaela
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Refilwe Matshitse
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda, 6140, South Africa.
| |
Collapse
|
15
|
Sangam S, Jindal S, Agarwal A, Banerjee BD, Prasad P, Mukherjee M. Graphene quantum dots-porphyrins/phthalocyanines multifunctional hybrid systems: from interfacial dialogue to applications. Biomater Sci 2022; 10:1647-1679. [DOI: 10.1039/d2bm00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered well-ordered hybrid nanomaterials are at a symbolically pivotal point, just ahead of a long-anticipated human race transformation. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins...
Collapse
|
16
|
Zhang Y, Liu B, Liu Z, Li J. Research progress in synthesis and biological application of quantum dots. NEW J CHEM 2022. [DOI: 10.1039/d2nj02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots are an excellent choice for biomedical applications due to their special optical properties and quantum confinement effects. This paper reviews the research and application progress of several quantum...
Collapse
|