1
|
Mohammed Ameen SS, Omer KM. Recent Advances of Bimetallic-Metal Organic Frameworks: Preparation, Properties, and Fluorescence-Based Biochemical Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31895-31921. [PMID: 38869081 DOI: 10.1021/acsami.4c06931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Bimetallic-metal organic frameworks (BiM-MOFs) or bimetallic organic frameworks represent an innovative and promising class of porous materials, distinguished from traditional monometallic MOFs by their incorporation of two metal ions alongside organic linkers. BiM-MOFs, with their unique crystal structure, physicochemical properties, and composition, demonstrate distinct advantages in the realm of biochemical sensing applications, displaying improvements in optical properties, stability, selectivity, and sensitivity. This comprehensive review explores into recent advancements in leveraging BiM-MOFs for fluorescence-based biochemical sensing, providing insights into their design, synthesis, and practical applications in both chemical and biological sensing. Emphasizing fluorescence emission as a transduction mechanism, the review aims to guide researchers in maximizing the potential of BiM-MOFs across a broader spectrum of investigations. Furthermore, it explores prospective research directions and addresses challenges, offering valuable perspectives on the evolving landscape of fluorescence-based probes rooted in BiM-MOFs.
Collapse
Affiliation(s)
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qlisan Street, Sulaymaniyah, 46002 Kurdistan Region, Iraq
| |
Collapse
|
2
|
Liu AG, Meng XY, Chen Y, Chen ZT, Liu PD, Li B. Introducing a Pyrazinoquinoxaline Derivative into a Metal-Organic Framework: Achieving Fluorescence-Enhanced Detection for Cs + and Enhancing Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:669-683. [PMID: 38150676 DOI: 10.1021/acsami.3c14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Conventional photoresponsive materials have low photon utilization due to irregular distribution of photoactive groups, which severely limits the related real applications. Metal-organic frameworks (MOFs) can modulate the regular arrangement of functional groups to improve the electron transport paths and enhance the photon utilization, which provides strong support for the development of photoactive materials with excellent performance. In this work, one effective strategy for constructing a photoactive MOF had been developed via the utilization of Cd2+ and pyrazinoquinoxaline tetracarboxylic acid. The structural advantages of the Cd-MOF, such as a porous structure, abundant subject-object interaction sites, and a stable framework, ensure the prerequisite for various applications, while the better synergistic effect of Cd3 clusters and the pyrazinoquinoxaline derivative ensures efficient electron transfer efficiency. Therefore, by virtue of these structural advantages, the Cd-MOF can achieve fluorescence quenching detection for a variety of substrates, such as Fe3+, Cr2O72-, MnO4-, nitrofuran antibiotics, and TNP explosives, while fluorescence enhancement detection can be achieved for halogen ions, Cs+, Pb2+, and NO2-. In addition, the Cd-MOF can be used as a photocatalyst to successfully achieve the photocatalytic conversion of benzylamine to N-benzylbenzimidate under mild conditions. Thus, the Cd-MOF as a whole shows the possibility of application as a diverse fluorescence detection and photocatalyst and also illustrates the feasibility of preparing high-performance photoactive materials using the pyrazinoquinoxaline derivative.
Collapse
Affiliation(s)
- Ao-Gang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xiao-Yu Meng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Yuan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zi-Tong Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Peng-da Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
3
|
Liu Y, Gao Z, Ji X, Wang Y, Zhang Y, Sun H, Li W, Wang L, Duan J. Efficient Adsorption of Tebuconazole in Aqueous Solution by Calcium Modified Water Hyacinth-Based Biochar: Adsorption Kinetics, Mechanism, and Feasibility. Molecules 2023; 28:molecules28083478. [PMID: 37110715 PMCID: PMC10145345 DOI: 10.3390/molecules28083478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The application of fungicides (such as tebuconazole) can impose harmful impacts on the ecosystem and humans. In this study, a new calcium modified water hyacinth-based biochar (WHCBC) was prepared and its effectiveness for removing tebuconazole (TE) via adsorption from water was tested. The results showed that Ca was loaded chemically (CaC2O4) onto the surface of WHCBC. The adsorption capacity of the modified biochar increased by 2.5 times in comparison to that of the unmodified water hyacinth biochar. The enhanced adsorption was attributed to the improved chemical adsorption capacity of the biochar through calcium modification. The adsorption data were better fitted to the pseudo-second-order kinetics and the Langmuir isotherm model, indicating that the adsorption process was dominated by monolayer adsorption. It was found that liquid film diffusion was the main rate-limiting step in the adsorption process. The maximum adsorption capacity of WHCBC was 40.5 mg/g for TE. The results indicate that the absorption mechanisms involved surface complexation, hydrogen bonding, and π-π interactions. The inhibitory rate of Cu2+ and Ca2+ on the adsorption of TE by WHCBC were at 4.05-22.8%. In contrast, the presence of other coexisting cations (Cr6+, K+, Mg2+, Pb2+), as well as natural organic matter (humic acid), could promote the adsorption of TE by 4.45-20.9%. In addition, the regeneration rate of WHCBC was able to reach up to 83.3% after five regeneration cycles by desorption stirring with 0.2 mol/L HCl (t = 360 min). The results suggest that WHCBC has a potential in application for removing TE from water.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Zhonglu Gao
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lide Wang
- Ningxia Branch of China Design Group Co., Ltd., Yinchuan 750001, China
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|