1
|
Tian R, Li K, Lin Y, Lu C, Duan X. Characterization Techniques of Polymer Aging: From Beginning to End. Chem Rev 2023; 123:3007-3088. [PMID: 36802560 DOI: 10.1021/acs.chemrev.2c00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Polymers have been widely applied in various fields in the daily routines and the manufacturing. Despite the awareness of the aggressive and inevitable aging for the polymers, it still remains a challenge to choose an appropriate characterization strategy for evaluating the aging behaviors. The difficulties lie in the fact that the polymer features from the different aging stages require different characterization methods. In this review, we present an overview of the characterization strategies preferable for the initial, accelerated, and late stages during polymer aging. The optimum strategies have been discussed to characterize the generation of radicals, variation of functional groups, substantial chain scission, formation of low-molecular products, and deterioration in the polymers' macro-performances. In view of the advantages and the limitations of these characterization techniques, their utilization in a strategic approach is considered. In addition, we highlight the structure-property relationship for the aged polymers and provide available guidance for lifetime prediction. This review could allow the readers to be knowledgeable of the features for the polymers in the different aging stages and provide access to choose the optimum characterization techniques. We believe that this review will attract the communities dedicated to materials science and chemistry.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Huang Q, Hassager O, Madsen J. Spatial Radical Distribution in Fractured Polymer Glasses and Melts Visualized Using a Profluorescent Nitroxide Probe. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, 610065Chengdu, China
- Danish Polymer Centre, Department of Chemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ole Hassager
- Danish Polymer Centre, Department of Chemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jeppe Madsen
- Danish Polymer Centre, Department of Chemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Lussini VC, Blinco JP, Fairfull-Smith KE, Bottle SE, Colwell JM. Profluorescent nitroxide sensors for monitoring the natural aging of polymer materials. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Verderosa AD, Dhouib R, Fairfull-Smith KE, Totsika M. Profluorescent Fluoroquinolone-Nitroxides for Investigating Antibiotic⁻Bacterial Interactions. Antibiotics (Basel) 2019; 8:antibiotics8010019. [PMID: 30836686 PMCID: PMC6466543 DOI: 10.3390/antibiotics8010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023] Open
Abstract
Fluorescent probes are widely used for imaging and measuring dynamic processes in living cells. Fluorescent antibiotics are valuable tools for examining antibiotic⁻bacterial interactions, antimicrobial resistance and elucidating antibiotic modes of action. Profluorescent nitroxides are 'switch on' fluorescent probes used to visualize and monitor intracellular free radical and redox processes in biological systems. Here, we have combined the inherent fluorescent and antimicrobial properties of the fluoroquinolone core structure with the fluorescence suppression capabilities of a nitroxide to produce the first example of a profluorescent fluoroquinolone-nitroxide probe. Fluoroquinolone-nitroxide (FN) 14 exhibited significant suppression of fluorescence (>36-fold), which could be restored via radical trapping (fluoroquinolone-methoxyamine 17) or reduction to the corresponding hydroxylamine 20. Importantly, FN 14 was able to enter both Gram-positive and Gram-negative bacterial cells, emitted a measurable fluorescence signal upon cell entry (switch on), and retained antibacterial activity. In conclusion, profluorescent nitroxide antibiotics offer a new powerful tool for visualizing antibiotic⁻bacterial interactions and researching intracellular chemical processes.
Collapse
Affiliation(s)
- Anthony D Verderosa
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia.
| | - Rabeb Dhouib
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia.
| | - Kathryn E Fairfull-Smith
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia.
| |
Collapse
|
5
|
Coiai S, Passaglia E, Cicogna F. Post-polymerization modification by nitroxide radical coupling. POLYM INT 2018. [DOI: 10.1002/pi.5664] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Serena Coiai
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM); Consiglio Nazionale delle Ricerche; Pisa Italy
| | - Elisa Passaglia
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM); Consiglio Nazionale delle Ricerche; Pisa Italy
| | - Francesca Cicogna
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM); Consiglio Nazionale delle Ricerche; Pisa Italy
| |
Collapse
|
6
|
Hansen KA, Blinco JP. Nitroxide radical polymers – a versatile material class for high-tech applications. Polym Chem 2018. [DOI: 10.1039/c7py02001e] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A comprehensive summary of synthetic strategies for the preparation of nitroxide radical polymer materials and a state-of-the-art perspective on their latest and most exciting applications.
Collapse
Affiliation(s)
- Kai-Anders Hansen
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
7
|
|
8
|
Allen JP, Pfrunder MC, McMurtrie JC, Bottle SE, Blinco JP, Fairfull‐Smith KE. BODIPY‐Based Profluorescent Probes Containing
Meso
‐ and β‐Substituted Isoindoline Nitroxides. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jesse P. Allen
- Faculty of Science and Engineering Queensland University of Technology (QUT) 2 George St 4001 Brisbane QLD Australia
| | - Michael C. Pfrunder
- Faculty of Science and Engineering Queensland University of Technology (QUT) 2 George St 4001 Brisbane QLD Australia
| | - John C. McMurtrie
- Faculty of Science and Engineering Queensland University of Technology (QUT) 2 George St 4001 Brisbane QLD Australia
| | - Steven E. Bottle
- Faculty of Science and Engineering Queensland University of Technology (QUT) 2 George St 4001 Brisbane QLD Australia
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology Faculty of Science and Engineering Queensland University of Technology (QUT) 2 George St 4001 Brisbane QLD Australia
| | - James P. Blinco
- Faculty of Science and Engineering Queensland University of Technology (QUT) 2 George St 4001 Brisbane QLD Australia
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology Faculty of Science and Engineering Queensland University of Technology (QUT) 2 George St 4001 Brisbane QLD Australia
| | - Kathryn E. Fairfull‐Smith
- Faculty of Science and Engineering Queensland University of Technology (QUT) 2 George St 4001 Brisbane QLD Australia
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology Faculty of Science and Engineering Queensland University of Technology (QUT) 2 George St 4001 Brisbane QLD Australia
| |
Collapse
|
9
|
Lussini VC, Blinco JP, Fairfull-Smith KE, Bottle SE. Polyaromatic Profluorescent Nitroxide Probes with Enhanced Photostability. Chemistry 2015; 21:18258-68. [DOI: 10.1002/chem.201503393] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 12/20/2022]
|
10
|
Paukszta D, Markiewicz E, Ostrowski A, Doczekalska B, Brzyska M, Szostak M, Borysiak S. Recycling of lignocellulosics filled polypropylene composites. I. Analysis of thermal properties, morphology, and amount of free radicals. J Appl Polym Sci 2014. [DOI: 10.1002/app.41693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dominik Paukszta
- Faculty of Chemical Technology; Poznan University of Technology; 60-965 Poznan Poland
| | - Ewa Markiewicz
- Polish Academy of Sciences, Institute of Molecular Physics; 60-179 Poznan Poland
| | - Adam Ostrowski
- Polish Academy of Sciences, Institute of Molecular Physics; 60-179 Poznan Poland
| | - Beata Doczekalska
- Faculty of Wood Technology; Poznan University of Live; 60-637 Poznan Poland
| | - Magdalena Brzyska
- Faculty of Chemical Technology; Poznan University of Technology; 60-965 Poznan Poland
| | - Marek Szostak
- Faculty of Mechanical Engineering; Poznan University of Technology; 60-965 Poznan Poland
| | - Sławomir Borysiak
- Faculty of Chemical Technology; Poznan University of Technology; 60-965 Poznan Poland
| |
Collapse
|
11
|
|
12
|
Sylvester PD, Ryan HE, Smith CD, Micallef AS, Schiesser CH, Wille U. Perylene-based profluorescent nitroxides for the rapid monitoring of polyester degradation upon weathering: An assessment. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Esthappan SK, Kuttappan SK, Joseph R. Effect of titanium dioxide on the thermal ageing of polypropylene. Polym Degrad Stab 2012. [DOI: 10.1016/j.polymdegradstab.2012.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|