1
|
King O, Pérez-Madrigal MM, Murphy ER, Hmayed AAR, Dove AP, Weems AC. 4D Printable Salicylic Acid Photopolymers for Sustained Drug Releasing, Shape Memory, Soft Tissue Scaffolds. Biomacromolecules 2023; 24:4680-4694. [PMID: 37747816 DOI: 10.1021/acs.biomac.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
3D printing of pharmaceuticals offers a unique opportunity for long-term, sustained drug release profiles for an array of treatment options. Unfortunately, this approach is often limited by physical compounding or processing limitations. Modification of the active drug into a prodrug compound allows for seamless incorporation with advanced manufacturing methods that open the door to production of complex tissue scaffold drug depots. Here we demonstrate this concept using salicylic acids with varied prodrug structures for control of physical and chemical properties. The role of different salicylic acid derivatives (salicylic acid, bromosalicylic allyl ester, iodosalicylic allyl ester) and linker species (allyl salicylate, allyl 2-(allyloxy)benzoate, allyl 2-(((allyloxy)carbonyl)oxy)benzoate) were investigated using thiol-ene cross-linking in digital light processing (DLP) 3D printing to produce porous prodrug tissue scaffolds containing more than 50% salicylic acid by mass. Salicylic acid photopolymer resins were all found to be highly reactive (solidification within 5 s of irradiation at λ = 405 nm), while the cross-linked solids display tunable thermomechanical behaviors with low glass transition temperatures (Tgs) and elastomeric behaviors, with the carbonate species displaying an elastic modulus matching that of adipose tissue (approximately 65 kPa). Drug release profiles were found to be zero order, sustained release based upon hydrolytic degradation of multilayered scaffolds incorporating fluorescent modeling compounds, with release rates tuned through selection of the linker species. Cytocompatibility in 2D and 3D was further demonstrated for all species compared to polycarbonate controls, as well as salicylic acid-containing composites (physical incorporation), over a 2-week period using murine fibroblasts. The use of drugs as the matrix material for solid prodrug tissue scaffolds opens the door to novel therapeutic strategies, longer sustained release profiles, and even reduced complications for advanced medicine.
Collapse
Affiliation(s)
- Olivia King
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Maria M Pérez-Madrigal
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
- Departament d'Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
| | - Erin R Murphy
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, United States
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, Ohio 45701, United States
| | | | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew C Weems
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, United States
- Mechanical Engineering, Russ College of Engineering, Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
2
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
3
|
Jacobs GP. Irradiation of pharmaceuticals: A literature review. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Yao Q, Hu Y, Yu F, Zhang W, Fu Y. A novel application of electrospun silk fibroin/poly(l-lactic acid-co-ε-caprolactone) scaffolds for conjunctiva reconstruction. RSC Adv 2018; 8:18372-18380. [PMID: 35541105 PMCID: PMC9080522 DOI: 10.1039/c7ra13551c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/08/2018] [Indexed: 11/21/2022] Open
Abstract
Electrospun hybrid nanofibers prepared using combinations of natural and synthetic polymers have been widely investigated in tissue engineering. In this study, silk fibroin (SF) and poly(l-lactic acid-co-ε-caprolactone) (PLCL) hybrid scaffolds were successfully prepared by electrospinning. Scanning electron micrographs (SEM) showed that SF/PLCL scaffolds were composed of defect-free nanofibers with a smooth and homogeneous fiber morphology. Water contact angle measurements demonstrated that the scaffolds were hydrophilic. To assess the cell affinity of SF/PLCL scaffolds, rabbit conjunctival epithelial cells (rCjECs) were cultured on the electrospun scaffolds. Scanning electron micrographs and in vitro proliferation assays showed that the cells adhered and proliferated well on the scaffolds. The quantitative polymerase chain reaction (qPCR) results showed excellent expression of CjEC genes, with reduced expression of inflammatory mediators. Hematoxylin and eosin (H&E) staining showed that the engineered conjunctiva constructed with SF/PLCL scaffolds consisted of 2–4 layers of epithelium. Furthermore, SF/PLCL scaffolds transplanted subcutaneously exhibited excellent biocompatibility. Therefore, SF/PLCL scaffolds may find biomedical applications in conjunctival reconstruction in the near future. We present a promising scaffold with favorable mechanical and biological properties for conjunctival regeneration.![]()
Collapse
Affiliation(s)
- Qinke Yao
- Department of Ophthalmology
- Ninth People’s Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Yang Hu
- Department of Ophthalmology
- Ninth People’s Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Fei Yu
- Department of Ophthalmology
- Ninth People’s Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Weijie Zhang
- Department of Ophthalmology
- Ninth People’s Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Yao Fu
- Department of Ophthalmology
- Ninth People’s Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| |
Collapse
|
5
|
de Oliveira AR, Mesquita PC, Machado PRL, Farias KJS, de Almeida YMB, Fernandes-Pedrosa MF, Cornélio AM, do Egito EST, da Silva-Júnior AA. Monitoring structural features, biocompatibility and biological efficacy of gamma-irradiated methotrexate-loaded spray-dried microparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:438-448. [PMID: 28866185 DOI: 10.1016/j.msec.2017.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/26/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022]
Abstract
In this study, biodegradable and biocompatible gamma irradiated poly-(dl-lactide-co-glycolide) (PLGA) spray-dried microparticles were prepared aiming to improve the efficacy of methotrexate (MTX). The experimental design included three formulations of microparticles containing distinct drug amount (9%, 18%, and 27% w/w) and three distinct gamma irradiation dose (15kGy, 25kGy, and 30kGy). The physicochemical and drug release properties of the microparticles supported their biocompatibility and biological efficacy studies in different cell lines. The irradiation induced slight changes in the spherical shape of the microparticles and the formation of free radicals was dependent on the drug loading. However, the amorphous character, particle size, drug loading, and drug release rate of the microparticles were preserved. The drug release data from all microparticles formulation were evaluated by using four drug kinetic models and by comparison of their similarity factor (f2). The gamma irradiation did not induce changes in the biocompatibility of PLGA microparticles and in the biological activity of the MTX-loaded microparticles. Finally, the spray-dried MTX-loaded PLGA microparticles enhanced the efficacy of the drug in the human cervical cancer cells (SiHa cell line). This study demonstrated the feasibility of the gamma irradiated spray dried PLGA microparticles for prolonged release of MTX, supporting a promising antitumor-drug delivery system for parenteral (subcutaneous) or pulmonary use.
Collapse
Affiliation(s)
- Alice R de Oliveira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Philippe C Mesquita
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Paula R L Machado
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Kleber J S Farias
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Yêda M B de Almeida
- Department of Chemical Engineering, Federal University of Pernambuco, UFPE, 50740-521 Recife, PE, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Alianda M Cornélio
- Department of Morphology, Federal University of Rio Grande do Norte, UFRN, 59078-970 Natal, RN, Brazil
| | - Eryvaldo Sócrates T do Egito
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Arnóbio A da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil.
| |
Collapse
|
6
|
Lee YS, Griffin J, Masand SN, Shreiber DI, Uhrich KE. Salicylic acid-based poly(anhydride-ester) nerve guidance conduits: Impact of localized drug release on nerve regeneration. J Biomed Mater Res A 2016; 104:975-82. [PMID: 26691691 DOI: 10.1002/jbm.a.35630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/05/2015] [Accepted: 12/16/2015] [Indexed: 11/10/2022]
Abstract
Nerve guidance conduits (NGCs) can serve as physical scaffolds aligning and supporting regenerating cells while preventing scar tissue formation that often interferes with the regeneration process. Numerous studies have focused on functionalizing NGCs with neurotrophic factors, for example, to support nerve regeneration over longer gaps, but few directly incorporate therapeutic agents. Herein, we fabricated NGCs from a polyanhydride comprised of salicylic acid (SA), a nonsteroidal anti-inflammatory drug, then performed in vitro and in vivo assays. In vitro studies included cytotoxicity, anti-inflammatory response, and NGC porosity measurements. To prepare for implantation, type I collagen hydrogels were used as NGC luminal fillers to further enhance the axonal regeneration process. For the in vivo studies, SA-NGCs were implanted in femoral nerves of mice for 16 weeks and evaluated for functional recovery. The SA-based NGCs functioned as both a drug delivery vehicle capable of reducing inflammation and scar tissue formation because of SA release as well as a tissue scaffold that promotes peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Yong S Lee
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Jeremy Griffin
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Shirley N Masand
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Kathryn E Uhrich
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854.,Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
7
|
Snyder SS, Anastasiou TJ, Uhrich KE. In Vitro Degradation of an Aromatic Polyanhydride with Enhanced Thermal Properties. Polym Degrad Stab 2015; 115:70-76. [PMID: 25870460 PMCID: PMC4392399 DOI: 10.1016/j.polymdegradstab.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polyanhydrides have been studied as a drug delivery vehicles due to their surface-eroding behavior which results in zero-order release. However, many polyanhyrides have thermal and solubility properties that make them difficult to formulate for these applications. Poly[α,α'-bis(ortho-carboxyphenoxy)-para-xylene] (oCPX) is an aromatic polyanhydride that has thermal and solubility properties enabling facile processing. The polymer's in vitro degradation profile exhibited an induction period up to 10 days in which degradation product concentration in the media was minimal, followed by a period of stable release of the biocompatible degradation product. Scanning electron microscope images and molecular weight changes of the polymer matrices confirm that this polymer is primarily surface-eroding. The combination of thermal properties, solubility, polymer degradation time, and erosion mechanism indicate that poly(oCPX) is be a suitable matrix candidate for extended, controlled drug delivery.
Collapse
Affiliation(s)
- Sabrina S. Snyder
- Department of Biomedical Engineering, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854
| | - Theodore J. Anastasiou
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854
| | - Kathryn E. Uhrich
- Department of Biomedical Engineering, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854
| |
Collapse
|
8
|
Rogers MA, Yan YF, Ben-Elazar K, Lan Y, Faig J, Smith K, Uhrich KE. Salicylic acid (SA) bioaccessibility from SA-based poly(anhydride-ester). Biomacromolecules 2014; 15:3406-11. [PMID: 25082798 DOI: 10.1021/bm500927r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different (p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer). The release rates followed a zero-order release rate that was dependent on several factors, including (1) solubilization rate, (2) macroscopic erosion of the powdered polymer, (3) hydrolytic cleavage of the anhydride bonds, and (4) subsequent hydrolysis of the polymer precursor (SADG) to SA and diglycolic acid.
Collapse
Affiliation(s)
- Michael A Rogers
- Department of Food Science and †New Jersey Institute of Food, Nutrition and Health, Rutgers University, The State University of New Jersey , New Brunswick, New Jersey 08901, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Formulation of salicylate-based poly(anhydride-ester) microspheres for short- and long-term salicylic acid delivery. Polym Bull (Berl) 2012; 70:343-351. [PMID: 23420391 DOI: 10.1007/s00289-012-0839-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The formulation of salicylate-based poly(anhydride-ester) (PAE) microspheres was optimized by altering polymer concentration and homogenization speed to improve the overall morphology. The microspheres were prepared using three salicylate-based PAEs with different chemical compositions comprised of either a heteroatomic, linear aliphatic, or branched aliphatic moiety. These PAEs broadened the range of complete salicylic acid release to now include days, weeks and months. The molecular weight (M(w)), polydispersity index (PDI) and glass transition temperature (T(g)) of the formulated polymers were compared to the unformulated polymers. In general, the M(w) and PDI exhibited decreased and increased values, respectively, after formulation, whereas the T(g) changes did not follow a specific trend. Microsphere size and morphology were determined using scanning electron microscopy. These microspheres exhibited smooth surfaces, no aggregation, and size distributions ranging from 2-34 m in diameter. In vitro release studies of the chemically incorporated salicylic acid displayed widely tunable release profiles.
Collapse
|