1
|
Pikula K, Johari SA, Golokhvast K. Colloidal Behavior and Biodegradation of Engineered Carbon-Based Nanomaterials in Aquatic Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4149. [PMID: 36500771 PMCID: PMC9737966 DOI: 10.3390/nano12234149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based nanomaterials (CNMs) have attracted a growing interest over the last decades. They have become a material commonly used in industry, consumer products, water purification, and medicine. Despite this, the safety and toxic properties of different types of CNMs are still debatable. Multiple studies in recent years highlight the toxicity of CNMs in relation to aquatic organisms, including bacteria, microalgae, bivalves, sea urchins, and other species. However, the aspects that have significant influence on the toxic properties of CNMs in the aquatic environment are often not considered in research works and require further study. In this work, we summarized the current knowledge of colloidal behavior, transformation, and biodegradation of different types of CNMs, including graphene and graphene-related materials, carbon nanotubes, fullerenes, and carbon quantum dots. The other part of this work represents an overview of the known mechanisms of CNMs' biodegradation and discusses current research works relating to the biodegradation of CNMs in aquatic species. The knowledge about the biodegradation of nanomaterials will facilitate the development of the principals of "biodegradable-by-design" nanoparticles which have promising application in medicine as nano-carriers and represent lower toxicity and risks for living species and the environment.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St., Sanandaj 66177-15175, Iran
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
2
|
Tsachouridis K, Christodoulou E, Zamboulis A, Michopoulou A, Barmpalexis P, Bikiaris DN. Evaluation of poly(lactic acid)/ and poly(lactic-co-glycolic acid)/ poly(ethylene adipate) copolymers for the preparation of paclitaxel loaded drug nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Tohluebaji N, Thainiramit P, Putson C, Muensit N. Phase and Structure Behavior vs. Electromechanical Performance of Electrostrictive P(VDF-HFP)/ZnO Composite Nanofibers. Polymers (Basel) 2021; 13:polym13152565. [PMID: 34372168 PMCID: PMC8348512 DOI: 10.3390/polym13152565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
In this work, we improved the electromechanical properties, electrostrictive behavior and energy-harvesting performance of poly(vinylidenefluoridene-hexafluoropropylene) P(VDF-HFP)/zinc oxide (ZnO) composite nanofibers. The main factor in increasing their electromechanical performance and harvesting power based on electrostrictive behavior is an improved coefficient with a modified crystallinity phase and tuning the polarizability of material. These blends were fabricated by using a simple electrospinning method with varied ZnO contents (0, 5, 10, 15 and 20 wt%). The effects of the ZnO nanoparticle size and content on the phase transformation, dielectric permittivity, strain response and vibration energy harvesting were investigated. The characteristics of these structures were evaluated utilizing SEM, EDX, XRD, FT-IR and DMA. The electrical properties of the fabrication samples were examined by LCR meter as a function of the concentration of the ZnO and frequency. The strain response from the electric field was observed by the photonic displacement apparatus and lock-in amplifier along the thickness direction at a low frequency of 1 Hz. Moreover, the energy conversion behavior was determined by an energy-harvesting setup measuring the current induced in the composite nanofibers. The results showed that the ZnO nanoparticles’ component effectively achieves a strain response and the energy-harvesting capabilities of these P(VDF-HFP)/ZnO composites nanofibers. The electrostriction coefficient tended to increase with a higher ZnO content and an increasing dielectric constant. The generated current increased with the ZnO content when the external electric field was applied at a vibration of 20 Hz. Consequently, the ZnO nanoparticles dispersed into electrostrictive P(VDF-HFP) nanofibers, which offer a large power density and excellent efficiency of energy harvesting.
Collapse
Affiliation(s)
- Nikruesong Tohluebaji
- Faculty of Science and Technology, Princess of Naradhiwas University, Narathiwat 96000, Thailand;
- Division of Physical Science (Physics), Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; (P.T.); (N.M.)
| | - Panu Thainiramit
- Division of Physical Science (Physics), Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; (P.T.); (N.M.)
- Center of Excellence in Nanotechnology for Energy (CENE), Songkhla 90112, Thailand
| | - Chatchai Putson
- Division of Physical Science (Physics), Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; (P.T.); (N.M.)
- Center of Excellence in Nanotechnology for Energy (CENE), Songkhla 90112, Thailand
- Correspondence:
| | - Nantakan Muensit
- Division of Physical Science (Physics), Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; (P.T.); (N.M.)
- Center of Excellence in Nanotechnology for Energy (CENE), Songkhla 90112, Thailand
| |
Collapse
|
4
|
Poly(l-Lactic Acid)-co-poly(Butylene Adipate) New Block Copolymers for the Preparation of Drug-Loaded Long Acting Injectable Microparticles. Pharmaceutics 2021; 13:pharmaceutics13070930. [PMID: 34201567 PMCID: PMC8308927 DOI: 10.3390/pharmaceutics13070930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
The present study evaluates the use of newly synthesized poly(l-lactic acid)-co-poly(butylene adipate) (PLA/PBAd) block copolymers as microcarriers for the preparation of aripiprazole (ARI)-loaded long acting injectable (LAI) formulations. The effect of various PLA to PBAd ratios (95/5, 90/10, 75/25 and 50/50 w/w) on the enzymatic hydrolysis of the copolymers showed increasing erosion rates by increasing the PBAd content, while cytotoxicity studies revealed non-toxicity for all prepared biomaterials. SEM images showed the formation of well-shaped, spherical MPs with a smooth exterior surface and no particle's agglomeration, while DSC and pXRD data revealed that the presence of PBAd in the copolymers favors the amorphization of ARI. FTIR spectroscopy showed the formation of new ester bonds between the PLA and PBAd parts, while analysis of the MP formulations showed no molecular drug-polyester matrix interactions. In vitro dissolution studies suggested a highly tunable biphasic extended release, for up to 30 days, indicating the potential of the synthesized copolymers to act as promising LAI formulations, which will maintain a continuous therapeutic level for an extended time period. Lastly, several empirical and mechanistic models were also tested, with respect to their ability to fit the experimental release data.
Collapse
|
5
|
Nanaki S, Viziridou A, Zamboulis A, Kostoglou M, Papageorgiou GZ, Bikiaris DN. New Biodegradable Poly(l-lactide)-Block-Poly(propylene adipate) Copolymer Microparticles for Long-Acting Injectables of Naltrexone Drug. Polymers (Basel) 2020; 12:E852. [PMID: 32272700 PMCID: PMC7240759 DOI: 10.3390/polym12040852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 01/30/2023] Open
Abstract
In the present study, novel block copolymers of poly(l-lactide)-block-poly(propylene adipate) (PLLA-b-PPAd) were synthesized in two ratios, 90/10 and 75/25 w/w and were further investigated as long-acting injectable (LAI) polymeric matrices in naltrexone base microparticle formulations. The synthesized polymers were characterized by 1H-NMR, 13C-NMR, FTIR, XRD, TGA and DSC. NMR and FTIR spectroscopies confirmed the successful synthesis of copolymers while DSC showed that these are block copolymers with well-defined and separated blocks. Microparticles were prepared by single emulsification method and were further characterized. Nanoparticles in the range of 0.4-4.5 μm were prepared as indicated by SEM, with copolymers giving the lowest particle size. By XRD and DSC it was found that naltrexone was present in the amorphous state in its microparticles. Dissolution study showed a drug release extending over seven days, indicating that these novel PLLA-b-PPAd copolymers could be promising matrices for naltrexone's LAI formulations. It was evidenced that drug release depended on the copolymer composition. Model release studies showed that drug release is controlled by diffusion.
Collapse
Affiliation(s)
- Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (S.N.); (A.Z.)
| | - Athina Viziridou
- Department of Food Science and Technology, International Hellenic University, GR-57400 Thessaloniki, Greece;
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (S.N.); (A.Z.)
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (S.N.); (A.Z.)
| |
Collapse
|
6
|
Lin SH, Wang HT, Wang JM, Wu TM. Enzymatic Degradation of Acrylic Acid-Grafted Poly(butylene succinate-co-terephthalate) Nanocomposites Fabricated Using Heat Pressing and Freeze-Drying Techniques. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E376. [PMID: 31947565 PMCID: PMC7013954 DOI: 10.3390/ma13020376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
Biodegradable acrylic acid-grafted poly(butylene succinate-co-terephthalate) (g-PBST)/organically modified layered zinc phenylphosphonate (m-PPZn) nanocomposites were effectively fabricated containing covalent bonds between the g-PBST and m-PPZn. The results of wide-angle X-ray diffraction and transmission electron microscopy revealed that the morphology of the g-PBST/m-PPZn nanocomposites contained a mixture of partially exfoliated or intercalated conformations. The isothermal crystallization behavior of the nanocomposites showed that the half-time for crystallization of 5 wt % g-PBST/m-PPZn nanocomposites was less than 1 wt % g-PBST/m-PPZn nanocomposites. This finding reveals that increasing the loading of m-PPZn can increase the crystallization rate of nanocomposites. Degradation tests of g-PBST/m-PPZn nanocomposites fabricated using the heat pressing and the freeze-drying process were performed by lipase from Pseudomonas sp. The degradation rates of g-PBST-50/m-PPZn nanocomposites were significantly lower than those of g-PBST-70/m-PPZn nanocomposites. The g-PBST-50 degraded more slowly due to the higher quantity of aromatic group and increased stiffness of the polymer backbone. The degradation rate of the freeze-drying specimens contained a more extremely porous conformation compared to those fabricated using the heat pressing process.
Collapse
Affiliation(s)
| | | | | | - Tzong-Ming Wu
- Department of Materials Science and Engineering, National Chung Hsing University, 250 KuoKuang Road, Taichung 402, Taiwan; (S.-H.L.); (H.-T.W.); (J.-M.W.)
| |
Collapse
|
7
|
Tohluebaji N, Putson C, Muensit N. High Electromechanical Deformation Based on Structural Beta-Phase Content and Electrostrictive Properties of Electrospun Poly(vinylidene fluoride- hexafluoropropylene) Nanofibers. Polymers (Basel) 2019; 11:polym11111817. [PMID: 31694289 PMCID: PMC6918245 DOI: 10.3390/polym11111817] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022] Open
Abstract
The poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) polymer based on electrostrictive polymers is essential in smart materials applications such as actuators, transducers, microelectromechanical systems, storage memory devices, energy harvesting, and biomedical sensors. The key factors for increasing the capability of electrostrictive materials are stronger dielectric properties and an increased electroactive β-phase and crystallinity of the material. In this work, the dielectric properties and microstructural β-phase in the P(VDF-HFP) polymer were improved by electrospinning conditions and thermal compression. The P(VDF-HFP) fibers from the single-step electrospinning process had a self-induced orientation and electrical poling which increased both the electroactive β-crystal phase and the spontaneous dipolar orientation simultaneously. Moreover, the P(VDF-HFP) fibers from the combined electrospinning and thermal compression achieved significantly enhanced dielectric properties and microstructural β-phase. Thermal compression clearly induced interfacial polarization by the accumulation of interfacial surface charges among two β-phase regions in the P(VDF-HFP) fibers. The grain boundaries of nanofibers frequently have high interfacial polarization, as they can trap charges migrating in an applied field. This work showed that the combination of electrospinning and thermal compression for electrostrictive P(VDF-HFP) polymers can potentially offer improved electrostriction behavior based on the dielectric permittivity and interfacial surface charge distributions for application in actuator devices, textile sensors, and nanogenerators.
Collapse
Affiliation(s)
- Nikruesong Tohluebaji
- Department of Physics, Faculty of science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Chatchai Putson
- Department of Physics, Faculty of science, Prince of Songkla University, Songkhla 90110, Thailand
- Center of Excellence in Nanotechnology for Energy (CENE), Songkhla 90110, Thailand
- Correspondence:
| | - Nantakan Muensit
- Department of Physics, Faculty of science, Prince of Songkla University, Songkhla 90110, Thailand
- Center of Excellence in Nanotechnology for Energy (CENE), Songkhla 90110, Thailand
| |
Collapse
|
8
|
Koulouktsi C, Nanaki S, Barmpalexis P, Kostoglou M, Bikiaris D. Preparation and characterization of Alendronate depot microspheres based on novel poly(-ε-caprolactone)/Vitamin E TPGS copolymers. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100014. [PMID: 31517279 PMCID: PMC6733287 DOI: 10.1016/j.ijpx.2019.100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
Abstract
In the present study, new aledronate (AL) loaded microspheres were prepared with the use of polycaprolactone (PCL)/Vitamin E d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) copolymers. Specifically, PCL-TPGS copolymers, prepared at several PCL to TPGS ratios (namely, 90/10, 80/20, 70/30 and 60/40 w/w) via a ring opening polymerization process, were characterized by intrinsic viscosity, proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and enzymatic hydrolysis. Results showed that as TPGS content increases the intrinsic viscosity of the copolymer (and hence, the viscosity-average molecular weight) is decreasing, while FTIR analysis showed the formation of hydrogen bonds between the —C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>O of PCL and the —OH of TPGS. Additionally, XRD analysis indicated that the prepared copolymers were semi-crystalline in nature, while enzymatic hydrolysis studies showed that increasing TGPS content led to increasing copolymer hydrolysis. In the following step, AL drug-loaded microspheres were prepared via single emulsification process. Scanning electron microscopy (SEM) revealed the formation of coarse drug-loaded microspheres with particle size close to 5 μm, while XRD analysis showed that the API was amorphously dispersed only in the cases of high TPGS content. Furthermore, FTIR analysis showed that the API did not interact with the copolymer components, while in vitro drug release studies showed that increasing PCL content led to decreasing API release rate. Finally, analysis of the drug release profiles suggested that the API release mechanism was solely governed by the polymer matrix erosion.
Collapse
Affiliation(s)
- Christina Koulouktsi
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| |
Collapse
|
9
|
Nanaki S, Barmpalexis P, Iatrou A, Christodoulou E, Kostoglou M, Bikiaris DN. Risperidone Controlled Release Microspheres Based on Poly(Lactic Acid)-Poly(Propylene Adipate) Novel Polymer Blends Appropriate for Long Acting Injectable Formulations. Pharmaceutics 2018; 10:E130. [PMID: 30104505 PMCID: PMC6161267 DOI: 10.3390/pharmaceutics10030130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022] Open
Abstract
The present study evaluates the preparation of risperidone controlled release microspheres as appropriate long-acting injectable formulations based on a series of novel biodegradable and biocompatible poly(lactic acid)⁻poly(propylene adipate) (PLA/PPAd) polymer blends. Initially, PPAd was synthesized using a two-stage melt polycondensation method (esterification and polycondensation) and characterized by 1H-NMR, differential scanning calorimetry (DSC), and powder X-ray diffraction (XRD) analyses. DSC and XRD results for PLA/PPAd blends (prepared by the solvent evaporation method) showed that these are immiscible, while enzymatic hydrolysis studies performed at 37 °C showed increased mass loss for PPAd compared to PLA. Risperidone-polyester microparticles prepared by the oil⁻water emulsification/solvent evaporation method showed smooth spherical surface with particle sizes from 1 to 15 μm. DSC, XRD, and Fourier-transformed infrared (FTIR) analyses showed that the active pharmaceutical ingredient (API) was dispersed in the amorphous phase within the polymer matrices, whereas in vitro drug release studies showed risperidone controlled release rates in all PLA/PPAd blend formulations. Finally, statistical moment analysis showed that polyester hydrolysis had a major impact on API release kinetics, while in PLA/PPAd blends with high PLA content, drug release was mainly controlled by diffusion.
Collapse
Affiliation(s)
- Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Alexandros Iatrou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
10
|
Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Bikiaris D. Biocompatible Nanobioglass Reinforced Poly(ε-Caprolactone) Composites Synthesized via In Situ Ring Opening Polymerization. Polymers (Basel) 2018; 10:polym10040381. [PMID: 30966416 PMCID: PMC6415238 DOI: 10.3390/polym10040381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester widely studied as a biomaterial for tissue engineering and controlled release applications, but its low bioactivity and weak mechanical performance limits its applications. In this work, nanosized bioglasses with two different compositions (SiO2–CaO and SiO2–CaO–P2O5) were synthesized with a hydrothermal method, and each one was used as filler in the preparation of PCL nanocomposites via the in situ ring opening polymerization of ε-caprolactone. The effect of the addition of 0.5, 1 and 2.5 wt % of the nanofillers on the molecular weight, structural, mechanical and thermal properties of the polymer nanocomposites, as well as on their enzymatic hydrolysis rate, bioactivity and biocompatibility was systematically investigated. All nanocomposites exhibited higher molecular weight values in comparison with neat PCL, and mechanical properties were enhanced for the 0.5 and 1 wt % filler content, which was attributed to extensive interactions between the filler and the matrix, proving the superiority of in situ polymerization over solution mixing and melt compounding. Both bioglasses accelerated the enzymatic degradation of PCL and induced bioactivity, since apatite was formed on the surface of the nanocomposites after soaking in simulated body fluid. Finally, all samples were biocompatible as Wharton jelly-derived mesenchymal stem cells (WJ-MSCs) attached and proliferated on their surfaces.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Polymers Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | - Diana Baciu
- National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, Athens GR15341, Greece.
| | - Eleni Gounari
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR57001 Thessaloniki, Greece.
| | - Theodore Steriotis
- National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, Athens GR15341, Greece.
| | - Georgia Charalambopoulou
- National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, Athens GR15341, Greece.
| | - Dimitrios Bikiaris
- Laboratory of Polymers Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| |
Collapse
|
11
|
Hazarika D, Gupta K, Mandal M, Karak N. High-Performing Biodegradable Waterborne Polyester/Functionalized Graphene Oxide Nanocomposites as an Eco-Friendly Material. ACS OMEGA 2018; 3:2292-2303. [PMID: 30023829 PMCID: PMC6044861 DOI: 10.1021/acsomega.7b01551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/13/2018] [Indexed: 05/29/2023]
Abstract
The development of high-performing nanocomposites of homogeneously dispersed graphene oxide in a waterborne polyester matrix with controlled interfacial interactions is a daunting challenge owing to the presence of strong cohesive energy in both. Thus, in this study, graphene oxide was functionalized with toluene diisocyanate and butane diol through a simple method and incorporated into the waterborne polyester matrix through a facile in situ bulk polymerization technique without using any compatibilizing agent or organic solvent for the first time. The thermoset of the nanocomposite was formed by curing it with hyperbranched epoxy of glycerol and poly(amido amine). The resultant thermosetting nanocomposites with 0.1-1 wt % functionalized graphene oxide exhibited significant enhancement in mechanical properties such as elongation at break (245-360%), tensile strength (7.8-39.4 MPa), scratch hardness (4 to >10 kg), toughness (17.18-86.35 MJ/m3), Young's modulus (243-358 MPa), impact resistance (8.3 to >9.3 kJ/m), and thermostability. Further, the Halpin-Tsai model was used to predict the alignment of graphene oxide. The nanocomposite was also biodegradable against the Pseudomonas aeruginosa bacterial strain. Furthermore, this nanocomposite exhibited strong catalytic activity for the aza-Michael addition reaction. Thus, the nanocomposite can be utilized as a high-performing sustainable material in different potential applications including as heterogeneous catalysts.
Collapse
Affiliation(s)
- Deepshikha Hazarika
- Advanced
Polymer and Nanomaterial Laboratory, Center for Polymer
Science and Technology, Department of Chemical Sciences, and Department of
Molecular Biology and Biotechnology, Tezpur
University, Napaam, Tezpur, 784028 Assam, India
| | - Kuldeep Gupta
- Advanced
Polymer and Nanomaterial Laboratory, Center for Polymer
Science and Technology, Department of Chemical Sciences, and Department of
Molecular Biology and Biotechnology, Tezpur
University, Napaam, Tezpur, 784028 Assam, India
| | - Manabendra Mandal
- Advanced
Polymer and Nanomaterial Laboratory, Center for Polymer
Science and Technology, Department of Chemical Sciences, and Department of
Molecular Biology and Biotechnology, Tezpur
University, Napaam, Tezpur, 784028 Assam, India
| | - Niranjan Karak
- Advanced
Polymer and Nanomaterial Laboratory, Center for Polymer
Science and Technology, Department of Chemical Sciences, and Department of
Molecular Biology and Biotechnology, Tezpur
University, Napaam, Tezpur, 784028 Assam, India
| |
Collapse
|
12
|
Chen YA, Tsai GS, Chen EC, Wu TM. Thermal degradation behaviors and biodegradability of novel nanocomposites based on various poly[(butylene succinate)-co-adipate] and modified layered double hydroxides. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Ilsouk M, Raihane M, Castelvetro V, Lahcini M, Bronco S, Rhouta B, Bianchi S, Conzatti L. Highly thermostable and crystalline poly(butylene adipate) bionanocomposites prepared byin situpolycondensation with organically modified Moroccan beidellite clay. POLYM INT 2017. [DOI: 10.1002/pi.5342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohamed Ilsouk
- Laboratory of Organometallic and Macromolecular Chemistry-Composite Materials University Cadi-Ayyad; Faculty of Sciences and Techniques; Morocco
| | - Mustapha Raihane
- Laboratory of Organometallic and Macromolecular Chemistry-Composite Materials University Cadi-Ayyad; Faculty of Sciences and Techniques; Morocco
| | - Valter Castelvetro
- Dipartimento di Chimica e Chimica Industriale; University of Pisa; Italy
- INSTM Pisa, National Interuniversity Consortium of Materials Science and Technology; Italy
| | - Mohammed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry-Composite Materials University Cadi-Ayyad; Faculty of Sciences and Techniques; Morocco
| | | | - Benaissa Rhouta
- Laboratory of Condensed Matter and Nanostructure (LMCN); University Cadi-Ayyad; Morocco
| | - Sabrina Bianchi
- INSTM Pisa, National Interuniversity Consortium of Materials Science and Technology; Italy
| | | |
Collapse
|
14
|
Toughening modification of diglycerol-based polylactide networks by incorporating poly(propylene sebacate) segments. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Zhang K, Cui Z, Xing G, Feng Y, Meng S. Improved performance of dye-sensitized solar cells based on modified kaolin/PVDF-HFP composite gel electrolytes. RSC Adv 2016. [DOI: 10.1039/c6ra19803a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The DSSCs based on modified kaolin/PVDF-HFP composite gel electrolyte have excellent efficiency.
Collapse
Affiliation(s)
- Kaiyue Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- PR China
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Zijian Cui
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- PR China
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Guangyu Xing
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- PR China
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Yaqing Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- PR China
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Shuxian Meng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- PR China
- Collaborative Innovation Center of Chemical Science and Engineering
| |
Collapse
|
16
|
Terzopoulou Z, Tsanaktsis V, Bikiaris DN, Exarhopoulos S, Papageorgiou DG, Papageorgiou GZ. Biobased poly(ethylene furanoate-co-ethylene succinate) copolyesters: solid state structure, melting point depression and biodegradability. RSC Adv 2016. [DOI: 10.1039/c6ra15994j] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel, biobased poly(ethylene furanoate-co-ethylene succinate) copolyesters were successfully prepared by melt polycondensation and their solid state structure, melting point depression and biodegradability were evaluated in detail.
Collapse
Affiliation(s)
- Zoe Terzopoulou
- Laboratory of Polymer Chemistry and Technology
- Department of Chemistry
- Aristotle University of Thessaloniki
- Thessaloniki
- Greece
| | - Vasilios Tsanaktsis
- Laboratory of Polymer Chemistry and Technology
- Department of Chemistry
- Aristotle University of Thessaloniki
- Thessaloniki
- Greece
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology
- Department of Chemistry
- Aristotle University of Thessaloniki
- Thessaloniki
- Greece
| | - Stylianos Exarhopoulos
- Chemistry Department
- University of Ioannina
- 45110 Ioannina
- Greece
- Department of Food Technology
| | | | | |
Collapse
|
17
|
Prabakaran K, Mohanty S, Nayak SK. Improved electrochemical and photovoltaic performance of dye sensitized solar cells based on PEO/PVDF–HFP/silane modified TiO2 electrolytes and MWCNT/Nafion® counter electrode. RSC Adv 2015. [DOI: 10.1039/c5ra01770j] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Solid state dye sensitized solar cells based on PEO/PVDF–HFP/M-TiO2.
Collapse
Affiliation(s)
- K. Prabakaran
- Laboratory for Advanced Research in Polymeric Materials (LARPM)
- Central Institute of Plastics Engineering & Technology
- Bhubaneswar-751 024
- India
| | - Smita Mohanty
- Laboratory for Advanced Research in Polymeric Materials (LARPM)
- Central Institute of Plastics Engineering & Technology
- Bhubaneswar-751 024
- India
| | - Sanjay Kumar Nayak
- Laboratory for Advanced Research in Polymeric Materials (LARPM)
- Central Institute of Plastics Engineering & Technology
- Bhubaneswar-751 024
- India
| |
Collapse
|
18
|
Nerantzaki M, Papageorgiou GZ, Bikiaris DN. Effect of nanofiller's type on the thermal properties and enzymatic degradation of poly(ε-caprolactone). Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci 2014; 15:7064-123. [PMID: 24776758 PMCID: PMC4057662 DOI: 10.3390/ijms15057064] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/22/2023] Open
Abstract
Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.
Collapse
|
20
|
Bikiaris DN. Nanocomposites of aliphatic polyesters: An overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2013.05.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Vasileiou AA, Papageorgiou GZ, Kontopoulou M, Docoslis A, Bikiaris D. Covalently bonded poly(ethylene succinate)/SiO2 nanocomposites prepared by in situ polymerisation. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.12.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|