1
|
Flores L, Shene C. Single Amino Acids as Sole Nitrogen Source for the Production of Lipids and Coenzyme Q by Thraustochytrium sp. RT2316-16. Microorganisms 2024; 12:1428. [PMID: 39065196 PMCID: PMC11279195 DOI: 10.3390/microorganisms12071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This work analyzes the production of total lipids and the content of CoQ9 and CoQ10 in the biomass of Thraustochytrium sp. RT2316-16 grown in media containing a single amino acid at a concentration of 1 g L-1 as the sole nitrogen source; glucose (5 g L-1) was used as the carbon source. Biomass concentration and the content of total lipids and CoQ were determined as a function of the incubation time; ten amino acids were evaluated. The final concentration of the total biomass was found to be between 2.2 ± 0.1 (aspartate) and 3.9 ± 0.1 g L-1 (glutamate). The biomass grown in media containing glutamate, serine or phenylalanine reached a content of total lipids higher than 20% of the cell dry weight (DW) after 72, 60 and 72 h of incubation, respectively. The highest contents of CoQ9 (39.0 ± 0.7 µg g-1 DW) and CoQ10 (167.4 ± 3.4 mg g-1 DW) in the biomass of the thraustochytrid were obtained when glutamate and cysteine were used as the nitrogen source, respectively. Fatty acid oxidation, which decreased the total lipid content during the first 12 h of incubation, and the oxidation of hydrogen sulfide when cysteine was the nitrogen source, might be related to the content of CoQ10 in the biomass of the thraustochytrid.
Collapse
Affiliation(s)
| | - Carolina Shene
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco 4780000, Chile;
| |
Collapse
|
2
|
Correa-Galetote D, Serrano A, Ciudad G, Pinto-Ibieta F. Optimisation of the biological production of levulinic acid in a mixed microbial culture fed with synthetic grape pomace. Front Bioeng Biotechnol 2024; 12:1398110. [PMID: 38798952 PMCID: PMC11116726 DOI: 10.3389/fbioe.2024.1398110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Levulinic acid (LA) is a polymer with a vast industrial application range and can be co-produced as a minor by-product during the biological production of polyhydroxyalkanoates (PHA). However, the influence of key parameters as tools for favouring the production of LA over PHA is still unclear. In this study, we investigated how several critical operational conditions, i.e., carbon-nitrogen ratio (C/N), organic loading rate (OLR) and airflow, can be optimised to favour LA accumulation over PHA production by a mixed microbial culture (MMC), using synthetic grape pomace (GP) hydrolysate as the substrate. The results showed that it was possible to direct the MMC towards LA accumulation instead of PHA. The maximum LA yield was 2.7 ± 0.2 g LA/(L·d) using a C/N of 35, an airflow of 5 L/min and an OLR of 4 g sCOD/(L·d). The OLR and, to a lesser extent, the C/N ratio were the main factors significantly and positively correlated with the biological synthesis of LA.
Collapse
Affiliation(s)
- David Correa-Galetote
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, Granada, Spain
- Instituto de Investigación del Agua, Universidad de Granada, Granada, Spain
| | - Antonio Serrano
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, Granada, Spain
- Instituto de Investigación del Agua, Universidad de Granada, Granada, Spain
| | - Gustavo Ciudad
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia en Investigación Biotecnologica aplicada al Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Fernanda Pinto-Ibieta
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
3
|
Xu JZ, Zhang YY, Zhang WG. Correlation between changes in flavor compounds and microbial community ecological succession in the liquid fermentation of rice wine. World J Microbiol Biotechnol 2023; 40:17. [PMID: 37981595 DOI: 10.1007/s11274-023-03844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Microorganisms play an important role in regulating flavor compounds in rice wine, whereas we often don't understand how did they affect flavor compounds. Here, the relations between flavor compounds and microbial community ecological succession were investigated by monitoring flavor compounds and microbial community throughout the fermentation stage of rice wine. The composition of microbial community showed a dynamic change, but 13 dominant bacterial genera and 4 dominant fungal genera were detected throughout the fermentation stages. Saccharomyces presented a strong negative correlation with fungi genera but had positive associations with bacteria genera. Similarly, flavor compounds in rice wine were also showed the dynamic change, and 112 volatile compounds and 17 free amino acids were identified in the whole stages. The alcohol-ester ratio was decreased in the LTF stage, indicating that low temperature boosts ester formation. The potential correlation between flavor compounds and microbial community indicated that Delftia, Chryseobacterium, Rhizopus and Wickerhamomyces were the core functional microorganisms in rice wine. These findings clarified the correlation between changes in flavor compounds and in microbial community in the liquid fermentation of rice wine, and these results have some reference value for the quality improvement and technological optimization in liquid fermentation of rice wine.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 # Lihu Road, WuXi, 214122, People's Republic of China.
| | - Yang-Yang Zhang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 # Lihu Road, WuXi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 # Lihu Road, WuXi, 214122, People's Republic of China
| |
Collapse
|
4
|
Pinto-Ibieta F, Cea M, Serrano A, Felissia FE, Area MC, Cabrera F, Ciudad G. Toward the use of mixed microbial cultures for the biological production of adipic and levulinic acid. Front Microbiol 2023; 14:1224543. [PMID: 37448576 PMCID: PMC10338001 DOI: 10.3389/fmicb.2023.1224543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Biological synthesis of high added-value compounds like adipic acid (AA), levulinic acid (LA), or polyhydroxybutyrate (PHB) using pure culture has been separately reported. However, pure culture requires sterile conditions and the use of specific carbon sources resulting in high operating costs. Different alternatives based on the use of mixed microbial cultures (MMC) have been explored to resolve this problem. MMC have been widely reported for the production of PHB, but scarcely reported for LA production and never for AA synthesis. This work presents a novel strategy for the co-production of AA LA, and PHB using MMC. The strategy consists in selecting an MMC producer of AA, LA and PHB from an inoculum obtained from a wastewater treatment plant, which is then subjected to the feast and famine culture strategy in a sequential batch reactor, coupled with a batch reactor step to enhance the accumulation of AA and LA. The results showed that the MMC could produce a 16 ± 2, 23 ± 1 and 5 ± %1 (g compound/g volatile solids) of AA, LA and PHB, respectively, using a non-fermented residual biomass rich in pentose, namely synthetic hemicellulose hydrolysate (SHH) as the carbon source. These results contribute to generating future research to better understand and optimise the biosynthesis of these compounds by MMC.
Collapse
Affiliation(s)
- Fernanda Pinto-Ibieta
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Mara Cea
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Antonio Serrano
- Institute of Water Research, University of Granada, Granada, Spain
- Department of Microbiology, Pharmacy Faculty, University of Granada, Granada, Spain
| | - Fernando E. Felissia
- IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Posadas, Argentina
| | - María Cristina Area
- IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Posadas, Argentina
| | - Francisco Cabrera
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Temuco, Chile
| | - Gustavo Ciudad
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
- Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
5
|
Nair LG, Agrawal K, Verma P. An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future. Biotechnol Genet Eng Rev 2022; 38:288-338. [PMID: 35670485 DOI: 10.1080/02648725.2022.2082223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lignocellulosic biomass (LCB) is an energy source that has a huge impact in today's world. The depletion of fossil fuels, increased pollution, climatic changes, etc. have led the public and private sectors to move towards sustainability i.e. using LCB for the production of biofuels and value-added compounds. A major bottleneck of the process is the recalcitrant nature of LCB. This can be overcome by using various pretreatment strategies like physical, chemical, biological, physicochemical, etc. Further, the pretreated biomass is made to undergo various steps like hydrolysis, saccharification, etc. for the conversion of value-added products and the remaining waste residues can be further utilized for the synthesis of secondary products thus favouring the zero-waste biorefinery concept. Currently, microorganisms are being explored for their use in biorefinery but the unavailability of commercial strains is a major limitation. Thus, the use of metagenomics can be used to overcome the limitation which is both cost-effective and environmentally friendly. The review deliberates the composition of LCBs, and their recalcitrance nature, followed by the structural changes caused by various pretreatment methods. The further steps in biorefineries, strategies for the development of zero-waste refineries, bottlenecks, and suggestions are also discussed. Special emphasis is given to the use of metagenomics for the discovery of microorganisms efficient for zero-waste biorefineries.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| |
Collapse
|
6
|
Sánchez-Muñoz S, Balbino TR, Terán-Hilares R, Mier-Alba E, Barbosa FG, Balagurusamy N, Santos JC, da Silva SS. Non-ionic surfactant formulation sequentially enhances the enzymatic hydrolysis of cellulignin from sugarcane bagasse and the production of Monascus ruber biopigments. BIORESOURCE TECHNOLOGY 2022; 362:127781. [PMID: 35973567 DOI: 10.1016/j.biortech.2022.127781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The effect of a non-ionic surfactant optimized formulation (SOF) obtained from an experimental design was evaluated for different influencing variables in the processing of sugarcane bagasse cellulignin to produce biopigments. The major findings in the saccharification stage using the SOF point that: at same enzyme loading, the highest glucan hydrolysis yield was 63 % (2-fold higher compared to control); the enzyme loading of 2.5 FPU/g resulted in similar yield compared to 10 FPU/g (control); 15 % (m/v) of total solids loading maintained the yield in fed-batch configuration; the hydrolysis yield is maintained at high shear force stress (800 rpm of stirring rate) and temperatures (50-70 °C). Besides, under separate and semi-simultaneous hydrolysis and fermentation, the maximum biopigments production were of 10 AU510nm/mL and 17.84 AU510nm/mL, respectively. The SOF used in this study was found to be a promising additive either in a single or sequential steps to produce biopigments in biorefineries.
Collapse
Affiliation(s)
- S Sánchez-Muñoz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil
| | - T R Balbino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil
| | - R Terán-Hilares
- Laboratory of Bioprocess and Membrane Technology, Department of Pharmaceutical, Biochemical and Biotechnological Sciences, Catholic University of Santa María (UCSM), Yanahuara, Arequipa, Perú
| | - E Mier-Alba
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil
| | - F G Barbosa
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil
| | - N Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila (UA de C), Torreón Campus, 27000 Torreón, Coah., México
| | - J C Santos
- Biopolymers, Bioreactors, and Process Simulation Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil
| | - S S da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil.
| |
Collapse
|
7
|
Optimization of hydrolases production from cassava peels by Trametes polyzona BKW001. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules 2021; 26:molecules26030753. [PMID: 33535536 PMCID: PMC7867074 DOI: 10.3390/molecules26030753] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
As the need for non-renewable sources such as fossil fuels has increased during the last few decades, the search for sustainable and renewable alternative sources has gained growing interest. Enzymatic hydrolysis in bioethanol production presents an important step, where sugars that are fermented are obtained in the final fermentation process. In the process of enzymatic hydrolysis, more and more new effective enzymes are being researched to ensure a more cost-effective process. There are many different enzyme strategies implemented in hydrolysis protocols, where different lignocellulosic biomass, such as wood feedstocks, different agricultural wastes, and marine algae are being used as substrates for an efficient bioethanol production. This review investigates the very recent enzymatic hydrolysis pathways in bioethanol production from lignocellulosic biomass.
Collapse
|
9
|
Pinto-Ibieta F, Cea M, Cabrera F, Abanto M, Felissia FE, Area MC, Ciudad G. Strategy for biological co-production of levulinic acid and polyhydroxyalkanoates by using mixed microbial cultures fed with synthetic hemicellulose hydrolysate. BIORESOURCE TECHNOLOGY 2020; 309:123323. [PMID: 32299048 DOI: 10.1016/j.biortech.2020.123323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Hemicellulose hydrolysates (HH), which could be an interesting carbon source to feed mixed microbial cultures (MMC) able to accumulate high value-added compounds. This research focused on the evaluation of a culture strategy to achieve the simultaneous biological production of Levulinic Acid (LA) and Polyhydroxyalcanoates (PHA) by MMC fed with a synthetic HH (SHH). The culture strategy involves the use of sequential batch reactors (SBR) to select microorganisms capable of producing LA and PHA. This work proved that the cultivation strategy used allowed the biological production of LA, reaching 37%w/w when the SHH was composed of 85% pentoses. In addition, the simultaneous biological production of LA and PHB was possible when the SHH was enriched with acetate (45% pentoses - 50% acetate). Finally, this study showed that the composition of the SHH impacts directly on the selected microorganism genus and the type and quantity of the value-added compounds obtained.
Collapse
Affiliation(s)
- F Pinto-Ibieta
- Doctorate of Engineering Sciences with Specialization in Bioprocess, Universidad de La Frontera, Av. Francisco Salazar #01145, Temuco, Chile; Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
| | - M Cea
- Departamento de Ingeniería Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - F Cabrera
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Temuco, Chile
| | - M Abanto
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - F E Felissia
- IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Misiones, Argentina, Félix de Azara 1552, Posadas, Argentina
| | - M C Area
- IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Misiones, Argentina, Félix de Azara 1552, Posadas, Argentina
| | - G Ciudad
- Departamento de Ingeniería Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Avenida Francisco Salazar #01145, Temuco, Chile.
| |
Collapse
|
10
|
Boboescu IZ, Damay J, Chang JKW, Beigbeder JB, Duret X, Beauchemin S, Lalonde O, Lavoie JM. Ethanol production from residual lignocellulosic fibers generated through the steam treatment of whole sorghum biomass. BIORESOURCE TECHNOLOGY 2019; 292:121975. [PMID: 31445238 DOI: 10.1016/j.biortech.2019.121975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Cellulosic ethanol could play a major role in the upcoming circular-economy once the process complexity, low carbohydrate extraction yields and high costs are resolved. To this purpose, different steam-treatment severity factors were employed on whole sweet sorghum biomass, followed by the delignification and hydrolysis of resulted lignocellulose fibers. A modified ASTM International (American Society for Testing and Material) standard cellulose hydrolysis approach as well as a newly developed SACH (Sulfuric Acid Cellulose Hydrolysis) process were used, recovering up to 24.3 wt% of cellulosic carbohydrates. This amounted to a total extractable and constitutive carbohydrate recovery of 51.7 wt% (dry basis) when a mild steam-treatment of whole sorghum biomass and the SACH cellulose hydrolysis were employed. An ethanol potential of 6378 L/ha/year was determined, comparable to values obtained from biomass such as sugarcane in warmer climates, supporting thus the opportunity of implementing this novel approach on a wider scale.
Collapse
Affiliation(s)
- Iulian-Zoltan Boboescu
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | - Jérémie Damay
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | - James Kong Win Chang
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | - Jean-Baptiste Beigbeder
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | - Xavier Duret
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | - Sophie Beauchemin
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | | | - Jean-Michel Lavoie
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada.
| |
Collapse
|
11
|
Prasertsung I, Aroonraj K, Kamwilaisak K, Saito N, Damrongsakkul S. Production of reducing sugar from cassava starch waste (CSW) using solution plasma process (SPP). Carbohydr Polym 2019; 205:472-479. [DOI: 10.1016/j.carbpol.2018.10.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 01/09/2023]
|
12
|
Kong-Win Chang J, Duret X, Berberi V, Zahedi-Niaki H, Lavoie JM. Two-Step Thermochemical Cellulose Hydrolysis With Partial Neutralization for Glucose Production. Front Chem 2018; 6:117. [PMID: 29740574 PMCID: PMC5928260 DOI: 10.3389/fchem.2018.00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/29/2018] [Indexed: 11/13/2022] Open
Abstract
Cellulose hydrolysis processes using concentrated acid usually involve two steps in order to obtain high glucose yields. The first step (pre-treatment) decrystallizes cellulose while the second step (post-hydrolysis) converts the amorphous cellulose to glucose. The two-step process developed by the Industrial Research Chair on Cellulosic Ethanol and Biocommodities and its industrial partner CRB Innovations Inc., includes an intermediate partial neutralization step, whose purpose is to decrease the amount of dilution water to be added for post-hydrolysis thus minimizing handling costs. In this work, the effect of several operating parameters on the glucose yield of this process was investigated using triticale cellulose and the best conditions yielding fermentable glucose (close to 100%) were determined. These conditions involve pre-treating cellulose at 30°C using 72 wt% H2SO4 with a H2SO4/dry cellulose mass ratio of 36 over 2 h, followed by a partial neutralization using 20 wt% NaOH at an H+/OH- molar ratio of 2.3-2.5 and a post-hydrolysis at 121°C for 10 min. HIGHLIGHTS Influence of operating parameters on the glucose yield have been investigated.Conditions for producing cellulosic glucose with yields close to 100% have been identified.
Collapse
Affiliation(s)
- James Kong-Win Chang
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Xavier Duret
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Jean-Michel Lavoie
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
Prasertsung I, Chutinate P, Watthanaphanit A, Saito N, Damrongsakkul S. Conversion of cellulose into reducing sugar by solution plasma process (SPP). Carbohydr Polym 2017; 172:230-236. [PMID: 28606530 DOI: 10.1016/j.carbpol.2017.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 10/19/2022]
Abstract
In the present study, cellulose colloids are treated with the solution plasma process in order to prepare reducing sugar. The investigated parameters are treatment time, type of electrodes, and applied pulse frequency of the bipolar supply. The reducing sugar was characterized by DNS method and the%yield of total reducing sugar (TRS) was then calculated. The crystal structure and chemical structure of plasma-treated cellulose was measured by XRD and FT-IR, respectively. The%yield of TRS was greatly enhanced by solution plasma treatment using Fe electrode. SEM and TEM micrograph indicated that Fe electrode yield the incidental Fe nanoparticles, hypothesized to catalyze the cellulose degradation during SPP treatment. The crystal structure of cellulose was destroyed. Solution plasma treatment of cellulose using Fe electrode at the high applied frequency pulse provided the highest%TRS.
Collapse
Affiliation(s)
- I Prasertsung
- Chemical Engineering Program, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| | - P Chutinate
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - A Watthanaphanit
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - N Saito
- Department of Materials, Physics, and Energy Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - S Damrongsakkul
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
14
|
Shi C, Tao F, Cui Y. Catalytic hydrolysis of cellulose into furans. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2016. [DOI: 10.1134/s0036024416130045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Li J, Qiang D, Zhang M, Xiu H, Zhang X. Joint action of ultrasonic and Fe3+ to improve selectivity of acid hydrolysis for microcrystalline cellulose. Carbohydr Polym 2015; 129:44-9. [DOI: 10.1016/j.carbpol.2015.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
|
16
|
de Oliveira HFN, Farès C, Rinaldi R. Beyond a solvent: the roles of 1-butyl-3-methylimidazolium chloride in the acid-catalysis for cellulose depolymerisation. Chem Sci 2015; 6:5215-5224. [PMID: 28717500 PMCID: PMC5500853 DOI: 10.1039/c5sc00393h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/14/2015] [Indexed: 11/21/2022] Open
Abstract
In this report, 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl) is demonstrated to enhance the kinetics of acid-catalysed hydrolysis of 1,4-β-glucans in binary solvent mixtures. [C4C1im]Cl plays other roles in the reaction beyond acting as a solvent for cellulose, as currently accepted. In fact, the presence of the IL increases the Hammett acidity of the catalyst dissolved in the reaction medium. The kinetic data from cellobiose and cellulose hydrolysis directly correlate with the acid strength found for p-toluenesulfonic acid in the different reaction media studied here. The current report identifies neglected, but yet very important phenomena occurring in cellulose depolymerisation.
Collapse
Affiliation(s)
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 , Mülheim an der Ruhr , Germany
| | - Roberto Rinaldi
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 , Mülheim an der Ruhr , Germany
- Imperial College London , Department of Chemical Engineering , South Kensington Campus , SW7 AZ2 London , UK .
| |
Collapse
|
17
|
Maitan-Alfenas GP, Visser EM, Guimarães VM. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2014.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Lin J, Li S, Sun M, Zhang C, Yang W, Zhang Z, Li X, Li S. Microbial lipid production by oleaginous yeast ind-xylose solution using a two-stage culture mode. RSC Adv 2014. [DOI: 10.1039/c4ra01453g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Hu H, Zhang Y, Liu X, Huang Z, Chen Y, Yang M, Qin X, Feng Z. Structural changes and enhanced accessibility of natural cellulose pretreated by mechanical activation. Polym Bull (Berl) 2013. [DOI: 10.1007/s00289-013-1070-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|