1
|
Guo Y, Shen Y, Yu B, Ding L, Meng Z, Wang X, Han M, Dong Z, Wang X. Hydrophilic Poly(glutamic acid)-Based Nanodrug Delivery System: Structural Influence and Antitumor Efficacy. Polymers (Basel) 2022; 14:2242. [PMID: 35683914 PMCID: PMC9182916 DOI: 10.3390/polym14112242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Poly(amino acids) have advanced characteristics, including unique secondary structure, enzyme degradability, good biocompatibility, and stimuli responsibility, and are suitable as drug delivery nanocarriers for tumor therapy. The isoform structure of poly(amino acids) plays an important role in their antitumor efficacy and should be researched in detail. In this study, two kinds of pH-sensitive isoforms, including α-poly(glutamic acid) (α-PGA) and γ-PGA, were selected and used as nanocarriers to prepare a nanodrug delivery system. According to the preparation results, α-PGA can be used as an ideal drug carrier. Selecting doxorubicin (DOX) as the model drug, an α-PGA/DOX nanoparticle (α-PGA/DOX NPs) with a particle size of 110.4 nm was prepared, and the drug-loading content was 66.2%. α-PGA/DOX NPs presented obvious sustained and pH-dependent release characteristics. The IC50 value of α-PGA/DOX NPs was 1.06 ± 0.77 μg mL-1, decreasing by approximately 8.5 fold in vitro against 4T1 cells after incubation for 48 h. Moreover, α-PGA/DOX NPs enhanced antitumor efficacy in vivo, the tumor inhibition rate was 67.4%, increasing 1.5 fold over DOX injection. α-PGA/DOX NPs also reduced the systemic toxicity and cardiotoxicity of DOX. In sum, α-PGA is a biosafe nanodrug delivery carrier with potential clinical application prospects.
Collapse
Affiliation(s)
- Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yiping Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Zheng Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Xiaotong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| |
Collapse
|
2
|
Khan R, Haider S, Razak SIA, Haider A, Khan MUA, Wahit MU, Bukhari N, Ahmad A. Recent advances in renewable polymer/metal oxide systems used for tissue engineering. RENEWABLE POLYMERS AND POLYMER-METAL OXIDE COMPOSITES 2022:395-445. [DOI: 10.1016/b978-0-323-85155-8.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Khan A, Alamry KA, Asiri AM. Multifunctional Biopolymers‐Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect 2021; 6:154-176. [DOI: 10.1002/slct.202003978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2025]
Abstract
AbstractBiopolymers are considered as a favorable group of substances with a broad array of applications, of which biomedical field stands out. The interesting features of biopolymers such as low‐cost, non‐cytotoxicity, hydrophilicity, biodegradation and biocompatibility make them promising and excellent feedstock to be used in implantable devices. The bounteous reactive functional groups in the backbone structure of polysaccharides and its derivatives could be utilized to develop hydrogels, nano‐composite and 3D scaffolds with appealing structures and desired features, leading to promising research attention towards biomedical fields. The present review describes the foremost properties as well as potential of different biopolymers, and their composites for application in implantable biomedical systems. This work may introduce readers about the comprehension of state‐of‐the‐art advances, real present challenges along with the future anticipation of eco‐friendly and biomimetic techniques for the modification of biopolymeric materials to improve their biomedical applications.
Collapse
Affiliation(s)
- Ajahar Khan
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A. Alamry
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
- Centre of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
6
|
Dou C, Li Z, Gong J, Li Q, Qiao C, Zhang J. Bio-based poly (γ-glutamic acid) hydrogels reinforced with bacterial cellulose nanofibers exhibiting superior mechanical properties and cytocompatibility. Int J Biol Macromol 2020; 170:354-365. [PMID: 33359810 DOI: 10.1016/j.ijbiomac.2020.12.148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/29/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022]
Abstract
Natural polymer hydrogels are expected to be promising biomaterial because of its excellent biocompatibility and biodegradability, but they are soft and easily broken. Herein, the poly (γ-glutamic acid) (γ-PGA)/bacterial cellulose (BC) composite hydrogels with excellent mechanical properties were constructed by introducing bacterial cellulose. The γ-PGA/BC composite hydrogels were obtained by the covalent cross-linking of γ-PGA in the BC nanofibers suspensions. The γ-PGA/BC composite hydrogels exhibited excellent strength and toughness due to the more effective energy dissipation of hydrogen bonds network among BC nanofibers and γ-PGA hydrogel matrix and BC also acts as an enhancer. The compressive fracture strength and toughness of the γ-PGA/BC composite hydrogels could reach up to 5.72 MPa and 0.42 MJ/m3 respectively. Additionally, the tensile strength of γ-PGA/BC composite hydrogels were improved 8.16 times compared with γ-PGA single network hydrogels. More significantly, BC could disperse evenly in the γ-PGA hydrogels because of the hydrophilic nature of γ-PGA and BC nanofillers, which led to good interface compatibility. The result of cytotoxicity tests indicated that γ-PGA/BC composite hydrogels present excellent cytocompatibility, which suggested that the γ-PGA/BC composite hydrogels could serve as promising materials for many biomaterial related applications.
Collapse
Affiliation(s)
- Chunyan Dou
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Changsheng Qiao
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
7
|
Moroishi H, Sonotaki S, Murakami Y. PLA- and PLA/PLGA-Emulsion Composite Biomaterial Sheets for the Controllable Sustained Release of Hydrophilic Compounds. MATERIALS 2018; 11:ma11122588. [PMID: 30572611 PMCID: PMC6316162 DOI: 10.3390/ma11122588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
In the present study, by spin-coating a solution containing w/o (water-in-oil) emulsions and hydrophobic polymers, we obtained sheets possessing uniformly dispersed w/o emulsions. We performed release experiments for more than 100 days and clarified the effects of the number of layers, the sheet-forming polymers (polylactide (PLA), poly(lactic-co-glycolic acid (PLGA)), the ratio of organic solvent to water, and the composition of block copolymers on the release properties of the sheets. For a variety of sheets, we successfully achieved the sustained release of compounds from the sheets for 100–150 days. The sustained-release of compounds occurred because the compounds had to diffuse into polymer networks after their release from the emulsions. Interestingly, we observed an inflection point in the release profiles at around 50 days; that is, the sheet exhibited a “two-step” release behavior. The results obtained in the present study provide strong evidence for the future possibility of the time-programmed release of multiple compounds from sheets.
Collapse
Affiliation(s)
- Hitomi Moroishi
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| | - Seiichi Sonotaki
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| | - Yoshihiko Murakami
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
10
|
Acquah C, Danquah MK, Moy CKS, Anwar M, Ongkudon CM. Parametric investigation of polymethacrylate monolith synthesis and stability via thermogravimetric characterisation. ASIA-PAC J CHEM ENG 2017. [DOI: 10.1002/apj.2077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Caleb Acquah
- Curtin Sarawak Research Institute; Curtin University; Miri Sarawak 98009 Malaysia
- Department of Chemical Engineering; Curtin University; Miri Sarawak 98009 Malaysia
| | - Michael K. Danquah
- Curtin Sarawak Research Institute; Curtin University; Miri Sarawak 98009 Malaysia
- Department of Chemical Engineering; Curtin University; Miri Sarawak 98009 Malaysia
| | - Charles K. S. Moy
- Department of Civil Engineering; Xi'an Jiaotong-Liverpool University; Suzhou Jiangsu 215123 China
| | - Mahmood Anwar
- Department of Mechanical Engineering; Curtin University; Miri Sarawak 98009 Malaysia
| | - Clarence M. Ongkudon
- Biotechnology Research Institute; Universiti Malaysia Sabah; Kota Kinabalu Sabah 88400 Malaysia
| |
Collapse
|
11
|
Acquah C, Danquah MK, Moy CKS, Anwar M, Ongkudon CM. Thermogravimetric characterization of ex situ polymethacrylate (EDMA-co-GMA) monoliths. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Caleb Acquah
- Curtin Sarawak Research Institute; Curtin University; Sarawak, 98009 Malaysia
- Department of Chemical Engineering; Curtin University; Sarawak, 98009 Malaysia
| | - Michael K. Danquah
- Curtin Sarawak Research Institute; Curtin University; Sarawak, 98009 Malaysia
- Department of Chemical Engineering; Curtin University; Sarawak, 98009 Malaysia
| | - Charles K. S. Moy
- Department of Civil Engineering; Xi'an Jiaotong-Liverpool University; Jiangsu, 215123 China
| | - Mahmood Anwar
- Department of Mechanical Engineering; Curtin University; Sarawak, 98009 Malaysia
| | - Clarence M. Ongkudon
- Biotechnology Research Institute; Universiti Malaysia Sabah, Kota Kinabalu; Sabah 88400 Malaysia
| |
Collapse
|