1
|
Latos-Brozio M, Czechowski L, Masek A. The Influence of Solar Ageing on the Compositions of Epoxy Resin with Natural Polyphenol Quercetin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1592. [PMID: 38612105 PMCID: PMC11012991 DOI: 10.3390/ma17071592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Epoxy resin compositions are used in modern railways, replacing other materials. However, epoxy composites in public transport are subject to many requirements, including that they should be flame retardant and resistant to weather conditions. The aim of the research was to analyse the resistance to solar ageing of epoxy resin composites containing flame retardants and the addition of the natural stabilising substance-quercetin. The homogeneity of the samples (optical microscopy and FTIR spectroscopy) and their thermal stability (TGA thermogravimetry) were analysed. The T5 temperature, which is the initial temperature of thermal decomposition of the samples, was 7 °C higher for the epoxy resin containing quercetin, so the material with polyphenol was characterised by better thermal resistance. Changes in material properties (hardness, surface energy, carbonyl index, colour) after 800 h solar ageing were investigated. The tensile tests on materials were executed for three different directions before and after ageing effect. The samples showed good resistance to degradation factors, i.e., they retained the functional properties (hardness and mechanical properties). However, analysis of carbonyl indices and surface energies showed that changes appeared in the composites after solar ageing, suggesting the beginning of material degradation. An approximately 3-fold increase in the polar component in epoxy resin compositions (from approximately 3 mN/m to approximately 11 mN/m) is associated with an increase in their hydrophilicity and the progress of ageing of the materials' surface. The obtained results are an introduction to further research on the long-term degradation processes of epoxy resins with plant stabilisers.
Collapse
Affiliation(s)
- Malgorzata Latos-Brozio
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Leszek Czechowski
- Department of Strength of Materials, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland;
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| |
Collapse
|
2
|
Latos-Brozio M, Masek A, Czechowski L, Jastrzębska A, Miszczak S. Effect of the Addition of Naringenin Derived from Citrus on the Properties of Epoxy Resin Compositions. Molecules 2024; 29:512. [PMID: 38276590 PMCID: PMC10818364 DOI: 10.3390/molecules29020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
This research concerns the modification of commercially available epoxy resin with flame retardants in order to obtain aging-resistant and antimicrobial polymeric materials with a plant stabilizer dedicated to use in rail transport. Polymer compositions based on epoxy resin, fiberglass fabric, and naringenin were prepared. Naringenin was added as a natural stabilizer at 2, 4, and 8 phr. The materials were subjected to solar aging lasting 800 h. The hardness of the samples, surface energy, and carbonyl indexes were determined, and the color change in the composition after aging was analyzed. In addition, microscopic observations, analyses of mechanical properties, and microbiological tests were performed. The hardness determination showed that the samples retained their functional properties after solar aging. The increase in the polar component of the surface energy of all materials indicated the beginning of the degradation process of the composites. The tensile one-directional tests were carried out for plane samples taken in three directions (0, 90, and 45 degrees referred to a plate edge) before and after the aging process. The addition of naringenin did not affect the functional and surface properties of the epoxy resin-based materials. Polyphenol stabilized polymer composites, as evidenced by the results of carbonyl indexes. Moreover, the obtained samples showed good antimicrobial properties for E. coli and C. albicans in the field of testing the viability of microbial cells in contact with the tested surfaces.
Collapse
Affiliation(s)
- Malgorzata Latos-Brozio
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Leszek Czechowski
- Department of Strength of Materials, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland;
| | - Aleksandra Jastrzębska
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland; (A.J.); (S.M.)
| | - Sebastian Miszczak
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland; (A.J.); (S.M.)
| |
Collapse
|
3
|
Ogagayere LO, Naiho AO, Emojevwe V, Igweh JC. Quercetin flavonoid and vitamin C recuperate kidney functions in potassium bromate-induced renal dysfunction in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3789-3796. [PMID: 37341785 DOI: 10.1007/s00210-023-02571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Studies into the functions and mechanisms of action of quercetin may be able to help dispel the negative effects of toxicants on renal toxicity due to its anti-inflammatory potential, as well as provide a simple, low-cost alternative for treating renal toxicity in developing nations. Therefore, the present study evaluated the ameliorative and renal protective activities of quercetin dihydrate in potassium bromate-induced, renal-toxic Wistar rats. Forty-five (45) mature female Wistar rats (180-200 g) were randomly grouped into nine (9) (n = 5). Group A served as general control. Nephrotoxicity was induced in groups B to I with the administration of potassium bromate. While group B served as a negative control, groups C-E received graded doses of quercetin (40, 60, and 80 mg/kg, respectively). Group F received 2.5 mg/kg/day of vitamin C, while groups G-I received vitamin C (2.5 mg/kg/day) and co-administration of a graded dose of quercetin (40, 60, and 80 mg/kg, respectively). Daily urine levels and final blood samples by retro-orbital techniques were collected for GFR, urea, and creatinine level assessment. The collected data were subjected to ANOVA and Tukey's post hoc test, and the results were presented as mean SEM with a p < 0.05 level considered significant. Body and organ weight and GFR were significantly reduced (p < 0.05), while serum and urine creatinine and urea were decreased in renotoxic animals. However, treatment with QCT reversed the renotoxic effects. We, therefore, concluded that quercetin administered alone or with vitamin C conferred renal protection by reversing KBrO3-induced renal toxicity in rats. Further studies to corroborate the present findings are recommended.
Collapse
Affiliation(s)
- Lucky Omamuzo Ogagayere
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
- Department of Physiology, Achievers University, Owo, Ondo State, Nigeria
| | - Alexander Obidike Naiho
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
- Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria.
| | - John Chukwuka Igweh
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
4
|
Carvalho D, Pinho C, Oliveira R, Moreira F, Oliveira AI. Chromatographic Methods Developed for the Quantification of Quercetin Extracted from Natural Sources: Systematic Review of Published Studies from 2018 to 2022. Molecules 2023; 28:7714. [PMID: 38067447 PMCID: PMC10708206 DOI: 10.3390/molecules28237714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Quercetin (QUE) is the most widely used flavonoid for therapeutic purposes. To improve the available knowledge about the properties of some natural products, determining the amount of QUE is crucial. The main objective of this systematic review is to identify the analytical methods validated for detecting and quantifying QUE in different matrices and characterize their sensitivity. A search was conducted until 30 June 2023 in the PubMed database for experimental studies that addressed the validation of chromatographic analytical methods to detect and quantify QUE from consumable natural products. Only studies published between 2018 and 2022, written in English, were included. The risk of bias was assessed by emphasizing methods of comparison according to previously published studies. Descriptive statistics were used to depict the obtained results. The studies were analyzed based on the type of QUE source, chromatographic method, and validation parameters. A total of 17 studies were included in this review. Plants were the most commonly analyzed source of QUE. Among the detection methods, spectrophotometry proved to be the most widely used, surpassing mass spectrometry (MS). After analyzing the bias, all the included studies mentioned/presented, totally or partially, at least four of the eight parameters.
Collapse
Affiliation(s)
- Daniel Carvalho
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (C.P.); (R.O.); (A.I.O.)
| | - Cláudia Pinho
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (C.P.); (R.O.); (A.I.O.)
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rita Oliveira
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (C.P.); (R.O.); (A.I.O.)
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Fernando Moreira
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (C.P.); (R.O.); (A.I.O.)
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Isabel Oliveira
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (C.P.); (R.O.); (A.I.O.)
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- REQUIMTE-LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
5
|
Mayer J, Steinbrecher R, Metzsch-Zilligen E, Pfaendner R. Antioxidant Activity of Biogenic Cinnamic Acid Derivatives in Polypropylene. Polymers (Basel) 2023; 15:3621. [PMID: 37688246 PMCID: PMC10490272 DOI: 10.3390/polym15173621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Antioxidants (AOs) from natural resources are an attractive research area, as petroleum-based products can be replaced in polymer stabilization. Therefore, novel esters based on the p-hydroxycinnamic acids p-coumaric acid, ferulic acid and sinapic acid were synthesized and their structure properties relationships were investigated. The structures of the novel bio-based antioxidants were verified using NMR and Fourier-transform infrared (FTIR) spectrometry. The high thermal stability above 280 °C and, therefore, their suitability as potential plastic stabilizers were shown using thermal gravimetric analysis (TGA). The radical scavenging activity of the synthesized esters was evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Stabilization performance was evaluated in polypropylene (PP) using extended extrusion experiments, oxidation induction time (OIT) measurements and accelerated heat aging. In particular, the sinapic acid derivative provides a processing stability of PP being superior to the commercial state-of-the-art stabilizer octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate.
Collapse
Affiliation(s)
- Jannik Mayer
- Division Plastics, Fraunhofer Institute for Structural Durability and System Reliability LBF, Schlossgartenstraße 6, D-64289 Darmstadt, Germany; (J.M.); (E.M.-Z.)
| | - René Steinbrecher
- Department Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, House 25, D-14476 Potsdam, Germany;
| | - Elke Metzsch-Zilligen
- Division Plastics, Fraunhofer Institute for Structural Durability and System Reliability LBF, Schlossgartenstraße 6, D-64289 Darmstadt, Germany; (J.M.); (E.M.-Z.)
| | - Rudolf Pfaendner
- Division Plastics, Fraunhofer Institute for Structural Durability and System Reliability LBF, Schlossgartenstraße 6, D-64289 Darmstadt, Germany; (J.M.); (E.M.-Z.)
| |
Collapse
|
6
|
Aleman RS, Cedillos R, Page R, Olson D, Aryana K. Physico-chemical, microbiological, and sensory characteristics of yogurt as affected by various ingredients. J Dairy Sci 2023; 106:3868-3883. [PMID: 37080788 DOI: 10.3168/jds.2022-22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 04/22/2023]
Abstract
l-Glutamine, quercetin, slippery elm bark, marshmallow root, N-acetyl-d-glucosamine, licorice root, maitake mushrooms, and zinc orotate have been reported to help treat leaky gut. The purpose of this research was to explore the impact of these functional ingredients on the physico-chemical, microbiological, and sensory properties of yogurt. The milk from same source was equally divided into 9 pails and the 8 ingredients were randomly assigned to the 8 pails. The control had no ingredient. Milk was fermented to yogurt. The pH, titratable acidity, syneresis, viscosity, color (L*, a*, b*, C*, and h*), Streptococcus thermophilus counts, and Lactobacillus delbrueckii spp. bulgaricus counts of yogurts were determined on d 1, 7, 14, 21, 28, 35, and 42, whereas coliform counts, yeast and mold counts, and rheological characteristics were determined on d 1 and 42. The sensory study was performed on d 3 and particle size of the functional ingredients (powder form) was also determined. When compared with control, the incorporation of slippery elm bark into yogurts led to less syneresis. l-Glutamine increased pH and n' values (relaxation exponent derived from G') and lowered titratable acidity values. N-Acetyl-d-glucosamine incorporation resulted in higher n' and lower titratable acidity values, whereas maitake mushroom led to lower n' values. Incorporating quercetin increased the growth of L. bulgaricus. Adding maitake mushrooms increased the growth of S. thermophilus but lowered apparent viscosity values, whereas quercetin decreased its S. thermophilus counts. Quercetin decreased L* and a* values but increased b* values, and maitake mushroom increased a* values. Thixotropic behavior increased with the addition of licorice root and quercetin. Adding slippery elm bark, N-acetyl-d-glucosamine, licorice root, maitake mushrooms, and zinc orotate into yogurt did not affect the sensory properties, whereas yogurts with quercetin had the lowest sensory scores. Overall, most of these ingredients did not cause major changes to yogurt properties.
Collapse
Affiliation(s)
- Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Roberto Cedillos
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Ryan Page
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Douglas Olson
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Kayanush Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803.
| |
Collapse
|
7
|
Aniśko J, Barczewski M. Uniaxial Rotational Molding of Bio-Based Low-Density Polyethylene Filled with Black Tea Waste. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103641. [PMID: 37241268 DOI: 10.3390/ma16103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
In this paper, the possibility of obtaining uniaxially rotomolded composite parts was discussed. The used matrix was bio-based low-density polyethylene (bioLDPE) filled with black tea waste (BTW) to prevent the thermooxidation of samples during processing. In rotational molding technology, the material is held at an elevated temperature in a molten state for a relatively long time, which can result in polymer oxidation. The Fourier transform infrared spectroscopy (FTIR) shows that adding 10 wt% of black tea waste has not led to the formation of carbonyl compounds in polyethylene, and adding 5 wt% and above prevents the appearance of the C-O stretching band connected with degradation of LDPE. The rheological analysis proved the stabilizing effect of black tea waste on the polyethylene matrix. The same temperature conditions of rotational molding did not change the chemical composition of black tea but slightly influenced the antioxidant activity of methanolic extracts; the detected changes suggest degradation is a color change, and the total color change parameter (ΔE) is 25. The oxidation level of unstabilized polyethylene measured using the carbonyl index exceeds 1.5 and gradually decreases with the addition of BTW. The BTW filler did not influence the melting properties of bioLDPE; the melting and crystallization temperature remained stable. The addition of BTW deteriorates the composite mechanical performance, including Young modulus and tensile strength, compared to the neat bioLDPE.
Collapse
Affiliation(s)
- Joanna Aniśko
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| |
Collapse
|
8
|
Rossomme E, Hart-Cooper WM, Orts WJ, McMahan CM, Head-Gordon M. Computational Studies of Rubber Ozonation Explain the Effectiveness of 6PPD as an Antidegradant and the Mechanism of Its Quinone Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5216-5230. [PMID: 36961979 PMCID: PMC10079164 DOI: 10.1021/acs.est.2c08717] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The discovery that the commercial rubber antidegradant 6PPD reacts with ozone (O3) to produce a highly toxic quinone (6PPDQ) spurred a significant research effort into nontoxic alternatives. This work has been hampered by lack of a detailed understanding of the mechanism of protection that 6PPD affords rubber compounds against ozone. Herein, we report high-level density functional theory studies into early steps of rubber and PPD (p-phenylenediamine) ozonation, identifying key steps that contribute to the antiozonant activity of PPDs. In this, we establish that our density functional theory approach can achieve chemical accuracy for many ozonation reactions, which are notoriously difficult to model. Using adiabatic energy decomposition analysis, we examine and dispel the notion that one-electron charge transfer initiates ozonation in these systems, as is sometimes argued. Instead, we find direct interaction between O3 and the PPD aromatic ring is kinetically accessible and that this motif is more significant than interactions with PPD nitrogens. The former pathway results in a hydroxylated PPD intermediate, which reacts further with O3 to afford 6PPD hydroquinone and, ultimately, 6PPDQ. This mechanism directly links the toxicity of 6PPDQ to the antiozonant function of 6PPD. These results have significant implications for development of alternative antiozonants, which are discussed.
Collapse
Affiliation(s)
- Elliot Rossomme
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
- Berkeley
Center for Green Chemistry, University of
California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - William M. Hart-Cooper
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - William J. Orts
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - Colleen M. McMahan
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - Martin Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Processing Stabilization of Polyethylene with Grape Peel Extract: Effect of Extraction Technology and Composition. Molecules 2023; 28:molecules28031011. [PMID: 36770676 PMCID: PMC9918917 DOI: 10.3390/molecules28031011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Dry grape peel powder was extracted by three different techniques, stirred tank reactor, Soxhlet and ultrasound extraction. The composition, physical and chemical structure and inherent stability of the extracts were characterized by various methods. The extracts and reference compounds were added to polyethylene and their stabilization efficiency was determined in multiple extrusion experiments. The composition of the extracts was quite similar. Ten main compounds were identified in the extracts, which contained a considerable number of polyphenols, but only small amounts of quercetin and trans-resveratrol. The extracts proved to be more efficient processing stabilizers than trans-resveratrol and the commercial stabilizer, Irganox 1010, irrespective of the extraction technology used. In spite of their good processing stabilization effect, polymers containing the extracts had poor residual stability. The differences in processing and long-term stabilization must be related to the different structures of the polyphenols contained by the extracts and the reference compounds. The results clearly prove that the IC50 value determined by the DPPH assay is not suitable for the estimation of the efficiency of a compound as a stabilizer for polymers.
Collapse
|
10
|
Li X, Zhang J, Liu C, Mu W, Kong Z, Li Y, Wang Z, Yu Q, Cheng G, Chen L. Effects of Pine Needle Extracts on the Degradation of LLDPE. Polymers (Basel) 2022; 15:polym15010032. [PMID: 36616382 PMCID: PMC9824879 DOI: 10.3390/polym15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Polyolefin suffers from degradation during processing and application. To prolong the service life, antioxidants are needed in the packing formula of polyolefin products. The usage of natural antioxidants could avoid potential health hazards aroused by synthetic ones. Pine needles have long lives and hardly rot, suggesting their high resistance to degradation. To provide a new candidate of natural antioxidants and add more value to pine needles, pine needle extracts (PNE) were investigated as the antioxidant of linear low-density polyethylene (LLDPE). PNE-modified LLDPE (PE-PNE) exhibited much better short-term and long-term aging resistance than pure LLDPE (PE): Oxidation induction time (OIT) of PE-PNE was 52 times higher than that of PE, and the increments of carbonyl index (CI) of PE-PNE-1st samples placed under daylight and in the dark were approximately 75% and 63% of PE under the same conditions. It could be attributed to the attractive antioxidant capacity of PNE (IC50 of DPPH radical scavenging was 115 μg/mL). In addition, the PE-PNE sample showed high processing stability and maintenance of the mechanical property during multiple extrusions: only a 0.2 g/10 min decrease in melting flow rate was found after five extrusions; the tensile strength and elongation at break were almost unchanged. All results reveal that pine needle extracts could play a role in LLDPE stabilization. Moreover, as pine needles are mainly considered a kind of waste, the present study would benefit the budget-reducing polyolefin industry.
Collapse
Affiliation(s)
- Xiangyao Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jie Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chengchao Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenmin Mu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhe Kong
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yan Li
- School of Biological and Chemical Engineering, Qingdao Technical College, Qingdao 266555, China
| | - Zhongwei Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qing Yu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Correspondence: (Q.Y.); (L.C.)
| | - Guiqing Cheng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Long Chen
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Correspondence: (Q.Y.); (L.C.)
| |
Collapse
|
11
|
Sui K, Mei F, Li X, Wang Z, Wang Z, Han Y, Yu Q, Cheng G. Forsythia suspensa extract obtained from traditional Chinese herbal medicine as an efficient natural antioxidant for polyethylene. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Villanueva MP, Gioia C, Sisti L, Martí L, Llorens-Chiralt R, Verstichel S, Celli A. Valorization of Ferulic Acid from Agro-Industrial by-Products for Application in Agriculture. Polymers (Basel) 2022; 14:polym14142874. [PMID: 35890651 PMCID: PMC9325307 DOI: 10.3390/polym14142874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
The use of bioplastic mulch in agriculture has increased dramatically in the last years throughout the world. Nowadays, biodegradable materials for mulching films strive to constitute a reliable and more sustainable alternative to classical materials such as polyethylene (PE). The main challenge is to improve their durability in the soil to meet the required service length for crop farming by using benign and sustainable antioxidant systems. Here, we report the design and fabrication of biodegradable materials based on polybutylene (succinate adipate) (PBSA) for mulching applications, incorporating a fully biobased polymeric antioxidant deriving from ferulic acid, which can be extracted from an industrial by-product. Poly-dihydro (ethylene ferulate) (PHEF) from ferulic acid was synthesized by a two-step polymerization process. It is characterized by improved thermal stability in comparison with ferulic acid monomer and therefore suitable for common industrial processing conditions. Different blends of PBSA and PHEF obtained by melt mixing or by reactive extrusion were prepared and analyzed to understand the effect of the presence of PHEF. The results demonstrate that PHEF, when processed by reactive extrusion, presents a remarkable antioxidant effect, even in comparison with commercial additives, preserving a high level of the mechanical properties of the PBSA matrix without affecting the biodegradable character of the blend.
Collapse
Affiliation(s)
- Maria Pilar Villanueva
- AIMPLAS, Plastics Technological Centre, Gustave Eiffel, 4, 46980 Paterna, Valencia, Spain; (M.P.V.); (L.M.); (R.L.-C.)
| | - Claudio Gioia
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Bologna, Italy; (L.S.); (A.C.)
- Correspondence:
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Bologna, Italy; (L.S.); (A.C.)
| | - Laura Martí
- AIMPLAS, Plastics Technological Centre, Gustave Eiffel, 4, 46980 Paterna, Valencia, Spain; (M.P.V.); (L.M.); (R.L.-C.)
| | - Raquel Llorens-Chiralt
- AIMPLAS, Plastics Technological Centre, Gustave Eiffel, 4, 46980 Paterna, Valencia, Spain; (M.P.V.); (L.M.); (R.L.-C.)
| | | | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Bologna, Italy; (L.S.); (A.C.)
| |
Collapse
|
13
|
Mayer J, Metzsch-Zilligen E, Pfaendner R. Corrected version: Novel multifunctional antioxidants for polymers using eugenol as biogenic building block. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Tátraaljai D, Tang Y, Pregi E, Vági E, Horváth V, Pukánszky B. Stabilization of PE with Pomegranate Extract: Contradictions and Possible Mechanisms. Antioxidants (Basel) 2022; 11:antiox11020418. [PMID: 35204300 PMCID: PMC8869723 DOI: 10.3390/antiox11020418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Dry pomegranate peel was extracted with acetone and the extract was added to a Phillips type polyethylene. The concentration of the extract was changed from 0 to 1000 ppm in six steps and stabilization efficiency was checked by the multiple extrusion of the polymer followed by the characterization of chemical structure, processing, and residual stability. The results confirmed the excellent processing stabilization efficiency of the extract, but also the poor long-term stability of PE containing it in accordance with previously published results. The extract is amorphous and its solubility is relatively large in the polymer; thus, these factors cannot be the reason for the poor stabilization efficiency in an oxygen-rich environment. Chemical factors like the self-interaction of the polyphenol molecules, the stability of the radicals forming after hydrogen abstraction, and the lack of hydrogens with the necessary reactivity must be considered during the evaluation of the efficiency of the extract. These factors as well as the insufficient number of active hydrogens hinder the reaction of the additive molecules with oxygen-centered radicals, thus leading to inferior long-term stability. The extract can be used for the processing stabilization of polymers, but for applications requiring long-term stability, it must be combined with other natural antioxidants like flavonoids or Vitamin E.
Collapse
Affiliation(s)
- Dóra Tátraaljai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Lóránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary; (E.P.); (B.P.)
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-382-6569
| | - Yun Tang
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (Y.T.); (E.V.)
| | - Emese Pregi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Lóránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary; (E.P.); (B.P.)
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Erika Vági
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (Y.T.); (E.V.)
| | - Viola Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary;
- MTA-BME Computation Driven Chemistry Research Group, P.O. Box 91, H-1521 Budapest, Hungary
| | - Béla Pukánszky
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Lóránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary; (E.P.); (B.P.)
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
15
|
Barreca D, Trombetta D, Smeriglio A, Mandalari G, Romeo O, Felice MR, Gattuso G, Nabavi SM. Food flavonols: Nutraceuticals with complex health benefits and functionalities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed Bio-Based High-Density Polyethylene Films. Antioxidants (Basel) 2020; 10:antiox10010014. [PMID: 33375591 PMCID: PMC7823819 DOI: 10.3390/antiox10010014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
This study originally explores the use of naringin (NAR), gallic acid (GA), caffeic acid (CA), and quercetin (QUER) as natural antioxidants for bio-based high-density polyethylene (bio-HDPE). These phenolic compounds are present in various citrus fruits and grapes and can remain in their leaves, peels, pulp, and seeds as by-products or wastes after juice processing. Each natural additive was first melt-mixed at 0.8 parts per hundred resin (phr) of bio-HDPE by extrusion and the resultant pellets were shaped into films by thermo-compression. Although all the phenolic compounds colored the bio-HDPE films, their contact transparency was still preserved. The chemical analyses confirmed the successful inclusion of the phenolic compounds in bio-HDPE, though their interaction with the green polyolefin matrix was low. The mechanical performance of the bio-HDPE films was nearly unaffected by the natural compounds, presenting in all cases a ductile behavior. Interestingly, the phenolic compounds successfully increased the thermo-oxidative stability of bio-HDPE, yielding GA and QUER the highest performance. In particular, using these phenolic compounds, the onset oxidation temperature (OOT) value was improved by 43 and 41.5 °C, respectively. Similarly, the oxidation induction time (OIT) value, determined in isothermal conditions at 210 °C, increased from 4.5 min to approximately 109 and 138 min. Furthermore, the onset degradation temperature in air of bio-HDPE, measured for the 5% of mass loss (T5%), was improved by up to 21 °C after the addition of NAR. Moreover, the GA- and CA-containing bio-HDPE films showed a high antioxidant activity in alcoholic solution due to their favored release capacity, which opens up novel opportunities in active food packaging. The improved antioxidant performance of these phenolic compounds was ascribed to the multiple presence of hydroxyl groups and aromatic heterocyclic rings that provide these molecules with the features to permit the delocalization and the scavenging of free radicals. Therefore, the here-tested phenolic compounds, in particular QUER, can represent a sustainable and cost-effective alternative of synthetic antioxidants in polymer and biopolymer formulations, for which safety and environmental issues have been raised over time.
Collapse
|
17
|
Xia H, Gao H, Sun Q, Wu F, Ge T, Sui K, Wang Z, Song L, Huang X, Yu Q. Puerarin, an efficient natural stabilizer for both polyethylene and
polypropylene. J Appl Polym Sci 2020. [DOI: 10.1002/app.49599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Huimin Xia
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Hui Gao
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Qiqi Sun
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Fazong Wu
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Tengteng Ge
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Kun Sui
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Zhongwei Wang
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Liang Song
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Xiaowen Huang
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Qing Yu
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| |
Collapse
|
18
|
Xia H, Sui K, Ge T, Wu F, Sun Q, Wang Z, Song L, Huang X, Yu Q. Natural compounds from
Punica granatum
peel as multiple stabilizers for polyethylene. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Huimin Xia
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Kun Sui
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Tengteng Ge
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Fazong Wu
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Qiqi Sun
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Zhongwei Wang
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Liang Song
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Xiaowen Huang
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Qing Yu
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| |
Collapse
|
19
|
Zaharescu T, Râpă M, Blanco I, Borbath T, Borbath I. Durability of LDPE/UHMWPE Composites under Accelerated Degradation. Polymers (Basel) 2020; 12:E1241. [PMID: 32486056 PMCID: PMC7362078 DOI: 10.3390/polym12061241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
This study presents a detailed analysis of thermal and radiation resistances of low density polyethylene (LDPE)/ultra-high molecular weight polyethylene (UHMWPE) blends containing hydroxyapatite as functional filler and rosemary acting as antioxidant against oxidative degradation. Three main procedures, chemiluminescence (CL), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC), were applied for the determination of the degree of degradation when these materials are subjected to heat and radiation action. The crystallinity was also assessed for the characterization of diffusion peculiarities. The contributions of the mixing components are discussed based on their oxidation strength. The activation energies required for the oxidative degradation of the studied formulations were calculated.
Collapse
Affiliation(s)
- Traian Zaharescu
- National Institute for Electrical Engineering (INCDIE, ICPE–CA), Radiochemistry Center; 030138 Bucharest, Romania
- ROSEAL SA, Odorheiu Secuiesc, 535600 Harghita, Romania; (T.B.); (I.B.)
| | - Maria Râpă
- Department of Materials Processing and Ecometallurgy, “Polytechnica” University, 060042 Bucharest, Romania;
| | - Ignazio Blanco
- Department of Civil Engineering and Architecture and UdR-Catania Consorzio INSTM, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Tunde Borbath
- ROSEAL SA, Odorheiu Secuiesc, 535600 Harghita, Romania; (T.B.); (I.B.)
| | - Istvan Borbath
- ROSEAL SA, Odorheiu Secuiesc, 535600 Harghita, Romania; (T.B.); (I.B.)
| |
Collapse
|
20
|
Shen F, Zhong H, Ge W, Ren J, Wang X. Quercetin/chitosan-graft-alpha lipoic acid micelles: A versatile antioxidant water dispersion with high stability. Carbohydr Polym 2020; 234:115927. [DOI: 10.1016/j.carbpol.2020.115927] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
|
21
|
The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 2020; 9:foods9030374. [PMID: 32210182 PMCID: PMC7143931 DOI: 10.3390/foods9030374] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/31/2022] Open
Abstract
Flavonoids are a class of natural substances present in plants, fruits, vegetables, wine, bulbs, bark, stems, roots, and tea. Several attempts are being made to isolate such natural products, which are popular for their health benefits. Flavonoids are now seen as an essential component in a number of cosmetic, pharmaceutical, and medicinal formulations. Quercetin is the major polyphenolic flavonoid found in food products, including berries, apples, cauliflower, tea, cabbage, nuts, and onions that have traditionally been treated as anticancer and antiviral, and used for the treatment of allergic, metabolic, and inflammatory disorders, eye and cardiovascular diseases, and arthritis. Pharmacologically, quercetin has been examined against various microorganisms and parasites, including pathogenic bacteria, viruses, and Plasmodium, Babesia, and Theileria parasites. Additionally, it has shown beneficial effects against Alzheimer’s disease (AD), and this activity is due to its inhibitory effect against acetylcholinesterase. It has also been documented to possess antioxidant, antifungal, anti-carcinogenic, hepatoprotective, and cytotoxic activity. Quercetin has been documented to accumulate in the lungs, liver, kidneys, and small intestines, with lower levels seen in the brain, heart, and spleen, and it is extracted through the renal, fecal, and respiratory systems. The current review examines the pharmacokinetics, as well as the toxic and biological activities of quercetin.
Collapse
|
22
|
Ionic liquid gels and antioxidant carbon nanotubes: Hybrid soft materials with improved radical scavenging activity. J Colloid Interface Sci 2019; 556:628-639. [DOI: 10.1016/j.jcis.2019.08.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
|
23
|
Nanni A, Battegazzore D, Frache A, Messori M. Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
|
25
|
Hári J, Sárközi M, Földes E, Pukánszky B. Long term stabilization of PE by the controlled release of a natural antioxidant from halloysite nanotubes. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
|
27
|
Concentration-dependent anti-/pro-oxidant activity of natural phenolic compounds in bio-polyesters. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
|
29
|
Dintcheva NT, Catalano G, Arrigo R, Morici E, Cavallaro G, Lazzara G, Bruno M. Pluronic nanoparticles as anti-oxidant carriers for polymers. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Biopolyester-based systems containing naturally occurring compounds with enhanced thermo-oxidative stability. J Appl Biomater Funct Mater 2016; 14:e455-e462. [PMID: 27716869 DOI: 10.5301/jabfm.5000322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND This work presents a sustainable approach for the stabilization of polylactic acid (PLA) against thermo-oxidative aging. METHODS Naturally occurring phenolic and polyphenolic compounds, such as ferulic acid (FerAc), vanillic acid (VanAc), quercetin (Querc) and vitamin E (VitE), were introduced into PLA. RESULTS The preliminary characterization of the systems formulated containing different amounts of natural stabilizers showed that all compounds used acted as plasticizers, leading to a decrease in rheological functions with respect to neat PLA, without significantly modifying the crystallinity of the raw material. The study of the thermo-oxidative behavior of neat PLA and PLA/natural compound systems, performed by spectrometric and thermal analyses, indicated that all stabilizers considered were able to exert a remarkable antioxidant action against thermo-oxidative phenomena. CONCLUSIONS All natural compounds considered are thus proposed as ecofriendly stabilizers, to get fully bio-based polymer systems with enhanced thermo-oxidative stability, suitable for biomedical applications.
Collapse
|
31
|
Kirschweng B, Bencze K, Sárközi M, Hégely B, Samu G, Hári J, Tátraaljai D, Földes E, Kállay M, Pukánszky B. Melt stabilization of polyethylene with dihydromyricetin, a natural antioxidant. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Manteghi A, Ahmadi S, Arabi H. Covalent immobilization of phenolic antioxidant on Ethylene copolymers: An efficient approach toward enhanced long-term stabilization of polypropylene. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.09.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Doudin K, Al-Malaika S, Sheena H, Tverezovskiy V, Fowler P. New genre of antioxidants from renewable natural resources: Synthesis and characterisation of rosemary plant-derived antioxidants and their performance in polyolefins. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Development of an antioxidant biomaterial by promoting the deglycosylation of rutin to isoquercetin and quercetin. Food Chem 2016; 204:420-426. [DOI: 10.1016/j.foodchem.2016.02.130] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/01/2016] [Accepted: 02/21/2016] [Indexed: 12/16/2022]
|
35
|
El-Beltagi HS, Ahmed MM. Assessment the Protective Role of Quercetin on Acrylamide-Induced Oxidative Stress in Rats. J Food Biochem 2016. [DOI: 10.1111/jfbc.12262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hossam S. El-Beltagi
- Biochemistry Department; Faculty of Agriculture, Cairo University; PO Box 12613 Giza Cairo Egypt
| | - Mahgoub M. Ahmed
- Molecular Drug Evaluation Department; National Organization for Drug Control and Research (NODCAR), PO Box 12553; Giza Egypt
| |
Collapse
|
36
|
Hári J, Gyürki Á, Sárközi M, Földes E, Pukánszky B. Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes. J Colloid Interface Sci 2016; 462:123-9. [PMID: 26454181 DOI: 10.1016/j.jcis.2015.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 01/27/2023]
Abstract
Halloysite nanotubes used as potential carrier material for a controlled release stabilizer in polyethylene were thoroughly characterized with several techniques including the measurement of specific surface area, pore volume and surface energy. The high surface energy of the halloysite results in the strong bonding of the additive to the surface. Dissolution experiments carried out with eight different solvents for the determination of the effect of solvent characteristics on the amount of irreversibly bonded quercetin proved that adsorption and dissolution depend on competitive interactions prevailing in the system. Solvents with low polarity dissolve only surplus quercetin adsorbed in multilayers. Polyethylene is a very apolar polymer forming weak interactions with every substance; quercetin dissolves into it from the halloysite surface only above a critical surface coverage. Stabilization experiments confirmed that strong adhesion prevents dissolution and results in limited stabilization efficiency. At larger adsorbed amounts better stability and extended effect were measured indicating dissolution and controlled release.
Collapse
Affiliation(s)
- József Hári
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91, Hungary; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, P.O. Box 286, Hungary.
| | - Ádám Gyürki
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91, Hungary; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, P.O. Box 286, Hungary.
| | - Márk Sárközi
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91, Hungary; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, P.O. Box 286, Hungary.
| | - Enikő Földes
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91, Hungary; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, P.O. Box 286, Hungary.
| | - Béla Pukánszky
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91, Hungary; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, P.O. Box 286, Hungary.
| |
Collapse
|
37
|
Abstract
We observed the anti-UV action of beetroot extract in an ultra-high molecular weight (UHMWPE) matrix. The beetroot extract and the one prepared from annatto seed also acted efficiently as pigment to the same polymeric matrix. Neat UHMWPE and UHMWPE compounded with annatto and beet extract were compression molded and tensile specimens were obtained from the molded plates and submitted to UV radiation for up to 42 days. Tensile tests were performed and it was observed that the beet extract had a stabilizing action in the polymer compared to neat polymer and the one with annatto extract. Complementary analyses showed good homogenization of the extracts through the polymer matrix indicating the possibility of use as pigment, although the annatto extract appeared to be very unstable under irradiation. Spectroscopic characterization helped to explain the stability of the extracts before and after molding.
Collapse
|
38
|
Bridson JH, Kaur J, Zhang Z, Donaldson L, Fernyhough A. Polymeric flavonoids processed with co-polymers as UV and thermal stabilisers for polyethylene films. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Dintcheva NT, Arrigo R, Gambarotti C, Carroccio S, Coiai S, Filippone G. Advanced ultra-high molecular weight polyethylene/antioxidant-functionalized carbon nanotubes nanocomposites with improved thermo-oxidative resistance. J Appl Polym Sci 2015. [DOI: 10.1002/app.42420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nadka Tzankova Dintcheva
- Dipartimento di Ingegneria Civile; Ambientale, Aerospaziale, dei Materiali, Università di Palermo; Viale delle Scienze 90128 Palermo Italy
| | - Rossella Arrigo
- Dipartimento di Ingegneria Civile; Ambientale, Aerospaziale, dei Materiali, Università di Palermo; Viale delle Scienze 90128 Palermo Italy
| | - Cristian Gambarotti
- Dipartimento di Chimica; Materiali e Ingegneria Chimica "Giulio Natta," Politecnico di Milano; 20133 Milano Italy
| | - Sabrina Carroccio
- Istituto per i Polimeri; Compositi e Biomateriali (IPCB); Consiglio Nazionale delle Ricerche; 95126 Catania Italy
| | - Serena Coiai
- Istituto di Chimica dei Composti Organo Metallici (ICCOM); Consiglio Nazionale delle Ricerche; 56124 Pisa Italy
| | - Giovanni Filippone
- Dipartimento di Ingegneria Chimica; dei Materiali e della Produzione Industriale, Università di Napoli Federico II; 80125 Napoli Italy
| |
Collapse
|
40
|
Thermo-oxidative resistant nanocomposites containing novel hybrid-nanoparticles based on natural polyphenol and carbon nanotubes. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
El-Nekeety AA, Abdel-Azeim SH, Hassan AM, Hassan NS, Aly SE, Abdel-Wahhab MA. Quercetin inhibits the cytotoxicity and oxidative stress in liver of rats fed aflatoxin-contaminated diet. Toxicol Rep 2014; 1:319-329. [PMID: 28962248 PMCID: PMC5598466 DOI: 10.1016/j.toxrep.2014.05.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/17/2014] [Accepted: 05/24/2014] [Indexed: 11/29/2022] Open
Abstract
This study was conducted to evaluate the protective role of quercetin (Q) against the cytotoxicity, DNA damage and oxidative stress in rats fed aflatoxin (AFs)-contaminated diet. Female Sprague-Dawley rats were divided into six groups and treated for 21 days as follows: the control group; the group fed AFs-contaminated diet (1.4 mg/kg diet); the groups treated orally with Q at low or high dose (50 and 100 mg/kg b.w.) and the groups AFs-contaminated diet plus low or high dose of Q. At the end of experiment, blood and liver samples were collected for biochemical, histological, histochemical and genetic analyses. The results indicated that animal fed AFs-contaminated diet showed significant increase in serum biochemical parameters, oxidative stress markers and DNA fragmentation accompanied with significant decrease in total proteins, GPX, SOD, DNA and RNA content and fatty acid synthase (Fas) and TNFα gene expression in the liver tissue. Q at the two tested doses succeeded to normalize the biochemical parameters, improved the content of nucleic acids in hepatic tissues, the gene expression, the histopathological and histochemical picture of the liver. It could be concluded that Q has a potential antioxidant activity, a protective action and regulated the alteration of genes expression induced by AFs.
Collapse
Affiliation(s)
- Aziza A. El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Giza, Egypt
| | | | - Aziza M. Hassan
- Cell Biology Department, National Research Center, Dokki, Giza, Egypt
- Biotechnology Department, Faculty of Science, Taif University, Saudi Arabia
| | - Nabila S. Hassan
- Pathology Department, National Research Center, Dokki, Giza, Egypt
| | - Soher E. Aly
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Giza, Egypt
| | | |
Collapse
|