1
|
Glover K, Mathew E, Pitzanti G, Magee E, Lamprou DA. 3D bioprinted scaffolds for diabetic wound-healing applications. Drug Deliv Transl Res 2023; 13:2096-2109. [PMID: 35018558 PMCID: PMC10315349 DOI: 10.1007/s13346-022-01115-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 11/25/2022]
Abstract
The treatment strategy required for the effective healing of diabetic foot ulcer (DFU) is a complex process that is requiring several combined therapeutic approaches. As a result, there is a significant clinical and economic burden associated in treating DFU. Furthermore, these treatments are often unsuccessful, commonly resulting in lower-limb amputation. The use of drug-loaded scaffolds to treat DFU has previously been investigated using electrospinning and fused deposition modelling (FDM) 3D printing techniques; however, the rapidly evolving field of bioprinting is creating new opportunities for innovation within this research area. In this study, 3D-bioprinted scaffolds with different designs have been fabricated for the delivery of an antibiotic (levoflocixin) to DFU. The scaffolds were fully characterised by a variety of techniques (e.g. SEM, DSC/TGA, FTIR, and mechanical characterisation), demonstrating excellent mechanical properties and providing sustained drug release for 4 weeks. This proof of concept study demonstrates the innovative potential of bioprinting technologies in fabrication of antibiotic scaffolds for the treatment of DFU.
Collapse
Affiliation(s)
- Katie Glover
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Giulia Pitzanti
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Erin Magee
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
2
|
Arslan Z, Kiliclar HC, Yagci Y. Dimanganese decacarbonyl catalyzed visible light induced ambient temperature depolymerization of poly(methyl methacrylate). Des Monomers Polym 2022; 25:271-276. [PMID: 36275914 PMCID: PMC9586668 DOI: 10.1080/15685551.2022.2135730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recent years have witnessed an enormous development in photoinduced systems, opening up possibilities for advancements in industry and academia in terms of green chemistry providing environmentally friendly conditions and spatiotemporal control over the reaction medium. A vast number of research have been conducted on photoinduced systems focusing on the development of new polymerization methods, although scarcely investigated, depolymerization of the synthesized polymers by photochemical means is also possible. Herein, we provide a comprehensive study of visible light induced dimanganese decacarbonyl (Mn2(CO)10) assisted depolymerization system for poly(methyl methacrylate) with chlorine chain end prepared by Atom Transfer Radical Polymerization. Contrary to the conventional procedures demanding high temperatures, the approach offers ambient temperature for the photodepolymerization process. This novel light-controlled concept is easily adaptable to macroscales and expected to promote further research in the fields matching with the environmental concerns.
Collapse
Affiliation(s)
- Zeynep Arslan
- Department of Chemistry, Istanbul Technical University, Maslak, Turkey
| | | | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, Maslak, Turkey
| |
Collapse
|
3
|
Chen Y, Liang T, Chen L, Chen Y, Yang BR, Luo Y, Liu GS. Self-assembly, alignment, and patterning of metal nanowires. NANOSCALE HORIZONS 2022; 7:1299-1339. [PMID: 36193823 DOI: 10.1039/d2nh00313a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Armed with the merits of one-dimensional nanostructures (flexibility, high aspect ratio, and anisotropy) and metals (high conductivity, plasmonic properties, and catalytic activity), metal nanowires (MNWs) have stood out as a new class of nanomaterials in the last two decades. They are envisaged to expedite significantly and even revolutionize a broad spectrum of applications related to display, sensing, energy, plasmonics, photonics, and catalysis. Compared with disordered MNWs, well-organized MNWs would not only enhance the intrinsic physical and chemical properties, but also create new functions and sophisticated architectures of optoelectronic devices. This paper presents a comprehensive review of assembly strategies of MNWs, including self-assembly for specific structures, alignment for anisotropic constructions, and patterning for precise configurations. The technical processes, underlying mechanisms, performance indicators, and representative applications of these strategies are described and discussed to inspire further innovation in assembly techniques and guide the fabrication of optoelectrical devices. Finally, a perspective on the critical challenges and future opportunities of MNW assembly is provided.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Tianwei Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| |
Collapse
|
4
|
Evans SE, Harrington T, Rodriguez Rivero MC, Rognin E, Tuladhar T, Daly R. 2D and 3D inkjet printing of biopharmaceuticals - A review of trends and future perspectives in research and manufacturing. Int J Pharm 2021; 599:120443. [PMID: 33675921 DOI: 10.1016/j.ijpharm.2021.120443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
There is an ongoing global shift in pharmaceutical business models from small molecule drugs to biologics. This increase in complexity is in response to advancements in our diagnoses and understanding of diseases. With the more targeted approach coupled with its inherently more costly development and manufacturing, 2D and 3D printing are being explored as suitable techniques to deliver more personalised and affordable routes to drug discovery and manufacturing. In this review, we explore first the business context underlying this shift to biopharmaceuticals and provide an update on the latest work exploring discovery and pharmaceutics. We then draw on multiple disciplines to help reveal the shared challenges facing researchers and firms aiming to develop biopharmaceuticals, specifically when using the most commonly explored manufacturing routes of drop-on-demand inkjet printing and pneumatic extrusion. This includes separating out how to consider mechanical and chemical influences during manufacturing, the role of the chosen hardware and the challenges of aqueous formulation based on similar challenges being faced by the printing industry. Together, this provides a review of existing work and guidance for researchers and industry to help with the de-risking and rapid development of future biopharmaceutical products.
Collapse
Affiliation(s)
| | | | | | - Etienne Rognin
- Institute for Manufacturing, Department of Engineering, University of Cambridge (UK), UK
| | | | - Ronan Daly
- Institute for Manufacturing, Department of Engineering, University of Cambridge (UK), UK.
| |
Collapse
|
5
|
Glover K, Stratakos AC, Varadi A, Lamprou DA. 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. Int J Pharm 2021; 599:120423. [PMID: 33647412 DOI: 10.1016/j.ijpharm.2021.120423] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022]
Abstract
Diabetic foot ulcer (DFU) is a serious complication of diabetes mellitus, affecting roughly 25% of diabetic patients and resulting in lower limb amputation in over 70% of known cases. In addition to the devastating physiological consequences of DFU and its impact on patient quality of life, DFU has significant clinical and economic implications. Various traditional therapies are implemented to effectively treat DFU. However, emerging technologies such as bioprinting and electrospinning, present an exciting opportunity to improve current treatment strategies through the development of 3D scaffolds, by overcoming the limitations of current wound healing strategies. This review provides a summary on (i) current prevention and treatment strategies available for DFU; (ii) methods of fabrication of 3D scaffolds relevant for this condition; (iii) suitable materials and commonly used molecules for the treatment of DFU; and (iv) future directions offered by emerging technologies.
Collapse
Affiliation(s)
- Katie Glover
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexandros Ch Stratakos
- Faculty of Health and Applied Sciences, Center for Research in Biosciences, University of the West of England, Bristol BS16 1QY, UK
| | - Aniko Varadi
- Faculty of Health and Applied Sciences, Center for Research in Biosciences, University of the West of England, Bristol BS16 1QY, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
6
|
|
7
|
Moore J, Raine T, Jenkins A, Livens F, Law K, Morris K, Law G, Yeates S. Decontamination of caesium and strontium from stainless steel surfaces using hydrogels. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
|
9
|
Wheeler JS, Longpré A, Sells D, McManus D, Lancaster S, Reynolds SW, Yeates SG. Effect of polymer branching on degradation during inkjet printing. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Filippone G, Carroccio S, Mendichi R, Gioiella L, Dintcheva N, Gambarotti C. Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state – Part I: Thermal and thermo-oxidative degradation of polyamide 11. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.06.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Yang C, Chang Y, Yang ZG. Preparation and characterization of printable solder resist inks based on hyperbranched polyester. J Appl Polym Sci 2014. [DOI: 10.1002/app.41805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Yang
- Department of Materials Science; Fudan University; Shanghai 200433 China
| | - Yu Chang
- Department of Materials Science; Fudan University; Shanghai 200433 China
| | - Zhen-Guo Yang
- Department of Materials Science; Fudan University; Shanghai 200433 China
| |
Collapse
|