1
|
Kim TM, Won HJ, Yang JH, Jo H, Kim AH, Nam D, Kim SG, Jin EJ, Bae HJ, Park SY. Multicolor Hair Dyeing with Biocompatible Dark Polyphenol Complex-Integrated Shampoo with Reactive Oxygen Species Scavenging Activity. Biomimetics (Basel) 2023; 8:469. [PMID: 37887600 PMCID: PMC10604431 DOI: 10.3390/biomimetics8060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Hair dyeing has become a prevalent lifestyle trend, especially within the fashion industry. However, it possesses disadvantages, such as containing carcinogenic and toxic materials. In this study, we developed a biocompatible hair-dyeing technology using a shampoo with a dark polyphenol complex (DPC), referred to as S-DPC. The DPC was formed from a mixture of gallic acid and [1,1'-biphenyl]-2,2',4,4',5,5'-hexol and used to enhance both the stability of the hair coating and its ability to scavenge reactive oxygen species (ROS). Colloidal DPC particles play a pivotal role in the coating process of various hair dyes, ensuring the uniform coloring of human hair through intermolecular interactions such as hydrogen bonding. Owing to the effect of a polyphenol complex on hair coating, we observed improved antistatic performance and enhanced mechanical strength, resulting in a substantial increase in elongation at the breaking point from 33.74% to 48.85%. The multicolor S-DPC exhibited antioxidant properties, as indicated by its ROS-scavenging ability, including 2,2-diphenyl-1-picrylhydrazyl inhibition (87-89%), superoxide radical scavenging (84-87%), and hydroxyl radical scavenging (95-98%). Moreover, the in vitro analysis of the DPC revealed nearly 100% cell viability in live and dead assays, highlighting the remarkable biocompatibility of the DPC. Therefore, considering its effectiveness and safety, this biomaterial has considerable potential for applications in hair dyeing.
Collapse
Affiliation(s)
- Tae Min Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (T.M.K.); (H.J.W.); (H.J.); (S.G.K.)
| | - Hyun Jeong Won
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (T.M.K.); (H.J.W.); (H.J.); (S.G.K.)
| | - Jun-Ho Yang
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Republic of Korea; (J.-H.Y.); (D.N.)
| | - Hayeon Jo
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (T.M.K.); (H.J.W.); (H.J.); (S.G.K.)
| | - A Hyeon Kim
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea;
| | - Dohyun Nam
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Republic of Korea; (J.-H.Y.); (D.N.)
| | - Seul Gi Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (T.M.K.); (H.J.W.); (H.J.); (S.G.K.)
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Republic of Korea; (J.-H.Y.); (D.N.)
| | - Heung Jin Bae
- MODAMODA Corporation, Ltd., Songpa-gu, Seoul 05546, Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (T.M.K.); (H.J.W.); (H.J.); (S.G.K.)
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea;
| |
Collapse
|
2
|
A Sequenced Study of Improved Dielectric Properties of Carbon Nanotubes and Metal Oxide-Reinforced Polymer Composites. MATERIALS 2022; 15:ma15134592. [PMID: 35806717 PMCID: PMC9267293 DOI: 10.3390/ma15134592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 01/09/2023]
Abstract
Polymers have gained attraction at the industrial level owing to their elastic and lightweight nature, as well as their astonishing mechanical and electrical applications. Their scope is limited due to their organic nature, which eventually leads to the degradation of their properties. The aim of this work was to produce polymer composites with finely dispersed metal oxide nanofillers and carbon nanotubes (CNTs) for the investigation of their charge-storage applications. This work reports the preparation of different polymeric composites with varying concentrations of metal oxide (MO) nanofillers and single-walled carbon nanotubes (SWCNTs). The successful synthesis of nanofillers (i.e., NiO and CuO) was carried out via the sonication and precipitation methods, respectively. After, the smooth and uniform polymeric composite thin films were prepared via the solution-casting methodology. Spectroscopy and diffraction techniques were used for the preliminary characterization. Scanning electron microscopy was used to check the dispersion of carbon nanotubes (CNTs) and MOs in the polymer matrix. The addition of nanofillers and carbon nanotubes (CNTs) tuned the bandgap, reduced the strain, and enhanced the elastic limit of the polymer. The addition of CNT enhanced the mechanical strength of the composite; however, it increased the conductivity, which was tuned by using metal oxides. By increasing the concentration of NiO and CuO from 2% to 6% bandgap of PVA, which is 5–6 eV reduced to 4.41 and 4.34 eV, Young’s moduli of up to 59 and 57.7 MPa, respectively, were achieved. Moreover, improved dielectric properties were achieved, which shows that the addition of metal oxide enhances the dielectric behavior of the material.
Collapse
|
3
|
Fabrication and Characterization of Gelatin/Polyvinyl Alcohol Composite Scaffold. Polymers (Basel) 2022; 14:polym14071400. [PMID: 35406273 PMCID: PMC9002603 DOI: 10.3390/polym14071400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, porous scaffold materials based on polyvinyl alcohol (PVA) and gelatin (Gel) were successfully fabricated and characterized. The mechanism of the reaction, morphology, and crystallinity were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In addition, thermogravimetric analysis (TGA) was performed together with differential scanning calorimetry (DSC) for examining the thermostability and phase transformation of the scaffolds. Degradation and swelling studies of PVA/Gel composite scaffold materials were performed in phosphate-buffered saline. Finally, the mechanical performances had been determined. According to the results, the polymer matrix that was formed by the combination of PVA and gelatin had better thermal stability. The synthesized composite scaffold was amorphous in nature. The addition of gelatin did not affect the fishbone-like microstructure of PVA, which ensures the excellent mechanical properties of the PVA scaffold. The denaturation temperature and elastic modulus of the PVA scaffold were improved by the gelatin addition, but the physical and chemical properties of the PVA scaffold were weakened when the gelatin content exceeded 10%. In addition, the PVA-10G sample has suitable degradability. Therefore, the PVA/Gel composite scaffold might potentially be applied in the field of tissue engineering that demands high strength.
Collapse
|
4
|
Baysak FK, Işıklan N. Pervaporation performance of poly(vinyl alcohol)‐graft‐poly(
N
‐hydroxymethyl acrylamide) membranes for dehydration of isopropyl alcohol‐water mixture. J Appl Polym Sci 2021. [DOI: 10.1002/app.51976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fatma Kurşun Baysak
- Science and Arts Faculty, Chemistry Department Kırıkkale University Kırıkkale Turkey
- Science and Arts Faculty, Chemistry Department Kırklareli University Kırklareli Turkey
| | - Nuran Işıklan
- Science and Arts Faculty, Chemistry Department Kırıkkale University Kırıkkale Turkey
| |
Collapse
|
5
|
Effect of polyvinyl alcohol on electrical, spectroscopic and thermal properties of gum acacia-based gel electrolytes containing NaOH. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03915-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Al-Sahaf Z, Raimi-Abraham B, Licciardi M, de Mohac LM. Influence of Polyvinyl Alcohol (PVA) on PVA-Poly-N-hydroxyethyl-aspartamide (PVA-PHEA) Microcrystalline Solid Dispersion Films. AAPS PharmSciTech 2020; 21:267. [PMID: 33006710 PMCID: PMC7532132 DOI: 10.1208/s12249-020-01811-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to formulate buccal films consisting of polyvinyl alcohol (PVA) and poly-N-hydroxyethyl-aspartamide (PHEA), to improve the dissolution of the drug through the oral mucosa. Ibuprofen sodium salt was used as a model drug, and the buccal film was expected to enhance its dissolution rate. Two different concentrations of PVA (5% w/v and 7.5% w/v) were used. Solvent casting was used to prepare films, where a solution consisting of drug and polymer was cast and allowed to dry. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to investigate the properties of films. In vitro dissolution studies were also conducted to investigate drug release. SEM studies showed that films containing a higher concentration of PVA had larger particles in microrange. FTIR studies confirmed the presence of the drug in films and indicated that ibuprofen sodium did not react with polymers. DSC studies confirmed the crystalline form of ibuprofen sodium when incorporated within films. In vitro dissolution studies found that the dissolution percentage of ibuprofen sodium alone was increased when incorporated within the film from 59 to 74%. This study led to the development of solid microcrystalline dispersion as a buccal film with a faster dissolution rate than the drug alone overcoming problem of poor solubility.
Collapse
Affiliation(s)
| | | | | | - Laura Modica de Mohac
- King's College London, London, UK. .,University of Study of Palermo, Palermo, Italy.
| |
Collapse
|
7
|
Yuan B, Yang S, Wang M, Jiang X, Bai S. Preparation of Ag foam catalyst based on in-situ thermally induced redox reaction between polyvinyl alcohol and silver nitrate with supercritical CO2 foaming technology. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Croitoru C, Pop MA, Bedo T, Cosnita M, Roata IC, Hulka I. Physically Crosslinked Poly (Vinyl Alcohol)/Kappa-Carrageenan Hydrogels: Structure and Applications. Polymers (Basel) 2020; 12:E560. [PMID: 32138357 PMCID: PMC7182908 DOI: 10.3390/polym12030560] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
This paper discusses the structure morphology and the thermal and swelling behavior of physically crosslinked hydrogels, obtained from applying four successive freezing-thawing cycles to poly (vinyl alcohol) blended with various amounts of κ-carrageenan. The addition of carrageenan in a weight ratio of 0.5 determines a twofold increase in the swelling degree and the early diffusion coefficients of the hydrogels when immersed in distilled water, due to a decrease in the crystallinity of the polymer matrix. The diffusion of water into the polymer matrix could be considered as a relaxation-controlled transport (anomalous diffusion). The presence of the sulfate groups determines an increased affinity of the hydrogels towards crystal violet cationic dye. A maximum physisorption capacity of up to 121.4 mg/g for this dye was attained at equilibrium.
Collapse
Affiliation(s)
- Catalin Croitoru
- Materials Engineering and Welding Department, Transilvania University of Brasov, Eroilor 29 Str, 500036 Brasov, Romania;
| | - Mihai Alin Pop
- Materials Science Department, Transilvania University of Brasov, Eroilor 29 Str, 500036 Brasov, Romania;
| | - Tibor Bedo
- Materials Science Department, Transilvania University of Brasov, Eroilor 29 Str, 500036 Brasov, Romania;
| | - Mihaela Cosnita
- Product Design Mechatronics and Environment Department, Transilvania University of Brasov, Eroilor 29 Str, 500036 Brasov, Romania;
| | - Ionut Claudiu Roata
- Materials Engineering and Welding Department, Transilvania University of Brasov, Eroilor 29 Str, 500036 Brasov, Romania;
| | - Iosif Hulka
- Research Institute of renewable energy–ICER, Politehnica University of Timisoara, Piata Victoriei Str., 300006 Timisoara, Romania;
| |
Collapse
|
9
|
Wang Z, Ding Y, Wang J. Novel Polyvinyl Alcohol (PVA)/Cellulose Nanocrystal (CNC) Supramolecular Composite Hydrogels: Preparation and Application as Soil Conditioners. NANOMATERIALS 2019; 9:nano9101397. [PMID: 31581503 PMCID: PMC6836027 DOI: 10.3390/nano9101397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
Abstract
In this work, cellulose nanocrystal (CNC) was modified by an ureido-pyrimidinone (UPy) system based on quadruple hydrogen bondings, and CNC-UPy was obtained. Then, this powder was added into polyvinyl alcohol (PVA), and PVA/CNC-UPy composite membranes and hydrogels were prepared. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), polarizing optical microscopy (POM) and particle size distribution (PSD) were used to characterize CNC-UPy. From the FTIR results, the characteristic peaks of NCO group sat 2270 cm−1 disappeared, indicating the successful synthesis of CNC-UPy. XRD results showed that the modification by UPy may change the structure of CNC and its degree of crystallinity was increased. PSD analysis showed that the particle size of CNC was increased and its size distribution became narrower after modification by UPy groups. The structure and properties of the composite membranes and hydrogels were studied by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) together with investigation of swelling, sustained release and self-healing performances. DSC curves depicted that the glass transition temperature, Tg, of different PVA membranes was increased with addition of different proportions of CNC-UPy. TGA data showed that the temperature of maximum weight loss rate was increased, which illustrated the enhanced thermal stability of PVA/CNC-UPy composites. Meanwhile, it was also revealed that the PVA/CNC-UPy composite hydrogels possess good self-healing and better sustained release behavior for the soil conditioner, fulvic acid (FA).
Collapse
Affiliation(s)
- Zuo Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yaoke Ding
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jincheng Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
10
|
Guo XL, Xu HX, He QD, Yu YX, Ming XF, Zheng FR, Wang XB, Huang ZJ, Zhao M, Xu PH. Preparation and characterization of conductive poly-dl-lactic-acid/tetra-aniline conduit for peripheral nerve regeneration. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518819600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Defected peripheral nerve regeneration is still a challenge in clinical treatment. Conductive polymers show great potential in nerve tissue engineering because of their electrical property based on bioelectricity in vivo. In this study, conductive composite nerve conduit was synthesized with tetra-aniline and poly-dl-lactic acid. Their properties and the differentiation of rat pheochromocytoma 12 (PC12) cells in vitro stimulated with 200 mV for 1 h were investigated. Different amounts of tetra-aniline (0%, 5%, 10%, and 15%) were used to synthesize the conduits with different conductivities (0, 0.00625, 0.01, and 0.025 s/m, respectively), tensile strengths (2.45, 3.40, 4.45, and 5.50 MPa, respectively), and contact angles (80°, 78.5°, 62.5°, and 61.5°, respectively). The percentage of neurite-bearing cells and the median neurite length increased with an obvious raise of the content of tetra-aniline. In addition, the conduit with subcutaneous implantable experiments in vivo showed less inflammatory response. These promising results illustrated that this poly-dl-lactic acid/tetra-aniline conductive composite conduit had potential for nerve tissue engineering.
Collapse
Affiliation(s)
- Xing-Lei Guo
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, P.R. China
| | - Hai-Xing Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, P.R. China
| | - Qun-Di He
- Wuhan Mafangshan Middle School, Wuhan, P.R. China
| | - Yun-Xuan Yu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, P.R. China
| | - Xiao-Fei Ming
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, P.R. China
| | - Fu-Rong Zheng
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, P.R. China
| | - Xiao-Bin Wang
- Wuhan Kanghua Century Pharmaceutical Company, Wuhan, P.R. China
| | - Zhi-Jun Huang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, P.R. China
| | - Meng Zhao
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, P.R. China
| | - Pei-Hu Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, P.R. China
| |
Collapse
|
11
|
In vitro and in vivo evaluation of pirfenidone loaded acrylamide grafted pullulan-poly(vinyl alcohol) interpenetrating polymer networks. Carbohydr Polym 2018; 202:288-298. [DOI: 10.1016/j.carbpol.2018.08.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
|
12
|
Niu X, Liu Y, Fang G, Huang C, Rojas OJ, Pan H. Highly Transparent, Strong, and Flexible Films with Modified Cellulose Nanofiber Bearing UV Shielding Property. Biomacromolecules 2018; 19:4565-4575. [PMID: 30412387 DOI: 10.1021/acs.biomac.8b01252] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This work investigates multifunctional composite films synthesized with cellulose nanofibers (CNFs) and poly(vinyl alcohol) (PVA). First, TEMPO-oxidized CNFs were modified in the heterogeneous phase with benzophenone, diisocyanate, and epoxidized soybean oil via esterification reactions. A thorough characterization was carried out via elemental analysis as well as FT-IR and X-ray photoelectron spectroscopies and solid-state NMR. Following, the surface-modified CNFs were combined with PVA to endow composite films with UV-absorbing capabilities while increasing their thermomechanical strength and maintaining a high light transmittance. Compared to neat PVF films, the tensile strength, Young modulus, and elongation of the films underwent dramatic increases upon addition of the reinforcing phase (maximum values of ∼96 MPa, ∼ 714 MPa, and ∼350%, respectively). A high UV blocking performance, especially in the UVB region, was observed for the introduced multifunctional PVA films at CNF loadings below 5 wt %. The trade-off between modified nanofibril function as interfacial reinforcement and aggregation leads to an optimum loading. The results indicate promising applications, for example, in active packaging.
Collapse
Affiliation(s)
- Xun Niu
- College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| | - Yating Liu
- College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| | - Guigan Fang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China.,Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry , Nanjing 210042 , PR China
| | - Chaobo Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China.,College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| | - Orlando J Rojas
- Biobased Colloids and Materials group (BiCMat), Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , FI-00076 , Espoo , Finland
| | - Hui Pan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China.,College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| |
Collapse
|
13
|
Soni S, Bhunia BK, Kumari N, Dan S, Mukherjee S, Mandal BB, Ghosh A. Therapeutically Effective Controlled Release Formulation of Pirfenidone from Nontoxic Biocompatible Carboxymethyl Pullulan-Poly(vinyl alcohol) Interpenetrating Polymer Networks. ACS OMEGA 2018; 3:11993-12009. [PMID: 30320284 PMCID: PMC6173564 DOI: 10.1021/acsomega.8b00803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/12/2018] [Indexed: 05/21/2023]
Abstract
The present study was conducted to develop therapeutically effective controlled release formulation of pirfenidone (PFD) and explore the possibility to reduce the total administered dose and dosing regimen. For this purpose, pH-sensitive biomaterial was prepared by inducing carboxymethyl group on pullulan by Williamson ether synthesis reaction, and further, interpenetrating polymeric network microspheres were prepared by glutaraldehyde-assisted water-in-oil (w/o) emulsion cross-linking method, which showed higher swelling ratio in acidic and basic pH. The formation of microspheres was confirmed by different spectral characterization techniques, and thermal kinetic study indicated the formation of thermally stable microspheres. Cell viability and biocompatibility studies on hepatocellular carcinoma (HepG2) cell showed the polymeric matrix to be biocompatible. In vitro dissolution of optimized formulation (F5) showed releases of 54.09 and 76.37% in 0.1 N HCl after 2 h and phosphate buffer (pH 6.8) up to 8 h, respectively. In vivo performances of prepared microsphere and marketed product of PFD were compared in rabbit. T max (time taken to reach peak plasma concentration) was found to be achieved at 0.83 h, compared to 0.5 h for Pirfenex with no significant difference complementing the immediate action, while area under curve was significantly greater for optimized formulation (9768 ± 1300 ng h/mL) compared to Pirfenex (4311 ± 110 ng h/mL), complementing the sustained action. In vivo pharmacokinetic study suggested that the prepared microsphere could be a potential candidate for therapeutically effective controlled delivery of PFD used in dyspnea and cough management due to idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Saundray
Raj Soni
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Bibhas K. Bhunia
- Biomaterial
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nimmy Kumari
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Subhashis Dan
- Division of Pharmaceutics, Department of Pharmaceutical Technology and Bioequivalence
Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sudipta Mukherjee
- Division of Pharmaceutics, Department of Pharmaceutical Technology and Bioequivalence
Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Biman B. Mandal
- Biomaterial
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Animesh Ghosh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
14
|
Influence of curing agent on dielectric properties of crosslinked poly(vinylalcohol-co-vinylcyanoethoxy). CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Song Y, Gerringer J, Qin S, Grunlan JC. High Oxygen Barrier Thin Film from Aqueous Polymer/Clay Slurry. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Coria-Hernández J, Méndez-Albores A, Meléndez-Pérez R, Rosas-Mendoza ME, Arjona-Román JL. Thermal, Structural, and Rheological Characterization of Waxy Starch as a Cryogel for Its Application in Food Processing. Polymers (Basel) 2018; 10:polym10040359. [PMID: 30966394 PMCID: PMC6414860 DOI: 10.3390/polym10040359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
Starch is the major component of cereal, pulses, and root crops. Starch consists of two kinds of glucose polymers, amylose and amylopectin. Waxy starch—with 99–100% amylopectin—has distinctive properties, which define its functionality in many food applications. In this research, a novel material was prepared through the cryogelification of waxy starch (WS) using four cycles of freezing and thawing in indirect contact with liquid nitrogen at −150 °C. Polyvinyl alcohol (PVA) was used as a reference. The cryogels were characterized using several validation methodologies: modulated differential scanning calorimetry (MDSC), scanning electron microscopy (SEM), rheology, and Fourier transform infrared (FTIR) spectroscopy with diffuse reflectance (DR). Based on the number of freeze–thaw cycles, significant changes were found (P < 0.05) showing important structural modifications as well as reorganization of the polymeric matrix. Two cryogelification cycles of the WS were enough to obtain the best structural and functional characteristics, similar to those of PVA, which has already been tested as a cryogel. From these results, it is concluded that WS has potential as a cryogel for application in food processing.
Collapse
Affiliation(s)
- Jonathan Coria-Hernández
- National Autonomous University of Mexico-Superior Studies Faculty at Cuautitlan (UNAM-FESC), Doctorate Program in Animal Production and Health Sciences, Cuautitlan Izcalli 54714, Mexico.
| | - Abraham Méndez-Albores
- National Autonomous University of Mexico-Superior Studies Faculty at Cuautitlan (UNAM⁻FESC), Campus 4. Multidisciplinary Research Unit L14 (Food, Mycotoxins and Mycotoxicosis), Cuautitlan Izcalli 54714, Mexico.
| | - Rosalía Meléndez-Pérez
- National Autonomous University of Mexico-Superior Studies Faculty at Cuautitlan (UNAM⁻FESC), Campus 4. Multidisciplinary Research Unit L13 (Thermal and Structural Analysis of Materials and Foods), Cuautitlan Izcalli 54714, Mexico.
| | - Marta Elvia Rosas-Mendoza
- National Autonomous University of Mexico-Superior Studies Faculty at Cuautitlan (UNAM⁻FESC), Campus 4. Multidisciplinary Research Unit L13 (Thermal and Structural Analysis of Materials and Foods), Cuautitlan Izcalli 54714, Mexico.
| | - José Luis Arjona-Román
- National Autonomous University of Mexico-Superior Studies Faculty at Cuautitlan (UNAM⁻FESC), Campus 4. Multidisciplinary Research Unit L13 (Thermal and Structural Analysis of Materials and Foods), Cuautitlan Izcalli 54714, Mexico.
| |
Collapse
|
17
|
Soni SR, Ghosh A. Exploring pullulan-poly(vinyl alcohol) interpenetrating network microspheres as controlled release drug delivery device. Carbohydr Polym 2017; 174:812-822. [DOI: 10.1016/j.carbpol.2017.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/15/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022]
|
18
|
Zhan Y, Meng Y, Yan N, Li Y, Wei D, Tao X. Enhancing electrochemical performance of Fe3
O4
/graphene hybrid aerogel with hydrophilic polymer. J Appl Polym Sci 2017. [DOI: 10.1002/app.45566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanhu Zhan
- Department of Materials Science and Engineering; Liaocheng University; Liaocheng Shandong 252000 China
| | - Yanyan Meng
- Department of Materials Science and Engineering; Liaocheng University; Liaocheng Shandong 252000 China
| | - Ning Yan
- Xi'an Modern Chemistry Research Institute; Xi'an Shaanxi 710000 China
| | - Yuchao Li
- Department of Materials Science and Engineering; Liaocheng University; Liaocheng Shandong 252000 China
| | - Denghu Wei
- Department of Materials Science and Engineering; Liaocheng University; Liaocheng Shandong 252000 China
| | - Xuquan Tao
- Department of Materials Science and Engineering; Liaocheng University; Liaocheng Shandong 252000 China
| |
Collapse
|
19
|
Dong SS, Wu F, Chen L, Wang YZ, Chen SC. Preparation and characterization of Poly(vinyl alcohol)/graphene nanocomposite with enhanced thermal stability using PEtVIm-Br as stabilizer and compatibilizer. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Worzakowska M, Torres-Garcia E, Grochowicz M. Kinetics of the oxidative decomposition of potato-starch-g-poly(phenyl methacrylate) copolymers. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|