1
|
Sourkouni G, Jeremić S, Kalogirou C, Höfft O, Nenadovic M, Jankovic V, Rajasekaran D, Pandis P, Padamati R, Nikodinovic-Runic J, Argirusis C. Study of PLA pre-treatment, enzymatic and model-compost degradation, and valorization of degradation products to bacterial nanocellulose. World J Microbiol Biotechnol 2023; 39:161. [PMID: 37067621 PMCID: PMC10110681 DOI: 10.1007/s11274-023-03605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
It is well acknowledged that microplastics are a major environmental problem and that the use of plastics, both petro- and bio- based, should be reduced. Nevertheless, it is also a necessity to reduce the amount of the already spread plastics. These cannot be easily degraded in the nature and accumulate in the food supply chain with major danger for animals and human life. It has been shown in the literature that advanced oxidation processes (AOPs) modify the surface of polylactic acid (PLA) materials in a way that bacteria more efficiently dock on their surface and eventually degrade them. In the present work we investigated the influence of different AOPs (ultrasounds, ultraviolet irradiation, and their combination) on the biodegradability of PLA films treated for different times between 1 and 6 h. The pre-treated samples have been degraded using a home model compost as well as a cocktail of commercial enzymes at mesophilic temperatures (37 °C and 42 °C, respectively). Degradation degree has been measured and degradation products have been identified. Excellent degradation of PLA films has been achieved with enzyme cocktail containing commercial alkaline proteases and lipases of up to 90% weight loss. For the first time, we also report valorization of PLA into bacterial nanocellulose after enzymatic hydrolysis of the samples.
Collapse
Affiliation(s)
- Georgia Sourkouni
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678, Clausthal-Zellerfeld, Germany.
| | - Sanja Jeremić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade (UB), Vojvode Stepe 444a,, 11042, Belgrade 152, Serbia
| | - Charalampia Kalogirou
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678, Clausthal-Zellerfeld, Germany
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15773, Athens, Greece
| | - Oliver Höfft
- Institute for Electrochemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| | - Marija Nenadovic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade (UB), Vojvode Stepe 444a,, 11042, Belgrade 152, Serbia
| | - Vukasin Jankovic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade (UB), Vojvode Stepe 444a,, 11042, Belgrade 152, Serbia
| | - Divya Rajasekaran
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Pavlos Pandis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15773, Athens, Greece
| | - Ramesh Padamati
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade (UB), Vojvode Stepe 444a,, 11042, Belgrade 152, Serbia
| | - Christos Argirusis
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678, Clausthal-Zellerfeld, Germany
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15773, Athens, Greece
| |
Collapse
|
2
|
Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring. Sci Rep 2020; 10:10854. [PMID: 32616743 PMCID: PMC7331702 DOI: 10.1038/s41598-020-67706-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Colorimetric and electrochemical (bio)sensors are commonly employed in wearable platforms for sweat monitoring; nevertheless, they suffer from low stability of the sensitive element. In contrast, mass-(bio)sensors are commonly used for analyte detection at laboratory level only, due to their rigidity. To overcome these limitations, a flexible mass-(bio)sensor for sweat pH sensing is proposed. The device exploits the flexibility of piezoelectric AlN membranes fabricated on a polyimide substrate combined to the sensitive properties of a pH responsive hydrogel based on PEG-DA/CEA molecules. A resonant frequency shift is recorded due to the hydrogel swelling/shrinking at several pH. Our device shows a responsivity of about 12 kHz/pH unit when measured in artificial sweat formulation in the pH range 3–8. To the best of our knowledge, this is the first time that hydrogel mass variations are sensed by a flexible resonator, fostering the development of a new class of compliant and wearable devices.
Collapse
|