1
|
Veeramanoharan A, Kim SC. A comprehensive review on sustainable surfactants from CNSL: chemistry, key applications and research perspectives. RSC Adv 2024; 14:25429-25471. [PMID: 39139242 PMCID: PMC11320967 DOI: 10.1039/d4ra04684f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Surfactants, a group of amphiphilic molecules (i.e. with hydrophobic(water insoluble) as well as hydrophilic(water soluble) properties) can modulate interfacial tension. Currently, the majority of surfactants depend on petrochemical feedstocks (such as oil and gas). However, deployment of these petrochemical surfactants produces high toxicity and also has poor biodegradability which can cause more environmental issues. To address these concerns, the current research is moving toward natural resources to produce sustainable surfactants. Among the available natural resources, Cashew Nut Shell Liquid (CNSL) is the preferred choice for industrial scenarios to meet their goals of sustainability. CNSL is an oil extracted from non-edible cashew nut shells, which doesn't affect the food supply chain. The unique structural properties and diverse range of use cases of CNSL are key to developing eco-friendly surfactants that replace petro-based surfactants. Against this backdrop, this article discusses various state-of-the-art developments in key cardanol-based surfactants such as anionic, cationic, non-ionic, and zwitterionic. In addition to this, the efficiency and characteristics of these surfactants are also analyzed and compared with those of the synthetic surfactants (petro-based). Furthermore, the present paper also focuses on various market aspects and different applications in various industries. Finally, this article describes various future research perspectives including Artificial Intelligence technology which, of late, is having a huge impact on society.
Collapse
Affiliation(s)
- Ashokkumar Veeramanoharan
- Department of Applied Chemistry, College of Science and Technology, Kookmin University 77 Jeongneung-ro, Sungbuk-Gu Seoul 02707 Republic of Korea
| | - Seok-Chan Kim
- Department of Applied Chemistry, College of Science and Technology, Kookmin University 77 Jeongneung-ro, Sungbuk-Gu Seoul 02707 Republic of Korea
| |
Collapse
|
2
|
Hou B, Wang Y, Li B, Gong T, Wu J, Li J. Synthesis of novel L-lactic acid-based plasticizers and their effects on the flexibility, crystallinity, and optical transparency of poly(lactic acid). Int J Biol Macromol 2024; 273:132826. [PMID: 38825277 DOI: 10.1016/j.ijbiomac.2024.132826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Using bio-based plasticizers derived from biomass resources to replace traditional phthalates can avoid the biotoxicity and non-biodegradability caused by the migration of plasticizers during the application of plastics. In this study, L-lactic acid and levulinic acid were employed as the major biomass monomer to successfully fabricate L-lactic acid-based plasticizers (LBL-n, n = 1.0, 1.5, 2.0, 2.5) containing a diverse number of lactate groups. The plasticizing mechanism was explained, manifesting that L-lactic acid-based plasticizers containing a substantial number of lactate groups could effectively improve the flexibility of poly (lactic acid) (PLA), and the elongation at break was 590 %-750 %. Compared to LBL-1.5 plasticized-PLA films, the tensile strength and modulus of ketonized-LBL-1.5 (KLBL-1.5) plasticized-PLA films increased to 59 % and 163 %, indicating the ketal functionality of plasticizers enhanced the strength of PLA. Meanwhile, the increment of lactate groups and the introduction of the ketal group in the plasticizer increased the crystallization, migration, and volatilization stability of plasticized-PLA films and also kept their outstanding optical transparency. Besides, the biodegradability of KLBL-1.5 was investigated by active soil and Tenebrio molitor experiments, and its degradation products were characterized. The findings indicated that KLBL-1.5 was fully decomposed. Taken together, this paper offers new promise for developing high-efficiency and biodegradable plasticizers.
Collapse
Affiliation(s)
- Boyou Hou
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yanning Wang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Bingjian Li
- Unipower Hydrogen Membrane Materials (Jiangsu) Research Institute Co., Ltd., China
| | - Tianyang Gong
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jianming Wu
- Changshu Sanheng Building Material Co. Ltd, Changshu 215500, China
| | - Jinchun Li
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Xu X, Yu J, Yang F, Li Y, Ou R, Liu Z, Liu T, Wang Q. Preparation of degradable chemically cross-linked polylactic acid films and its application on disposable straws. Int J Biol Macromol 2023; 251:126394. [PMID: 37595700 DOI: 10.1016/j.ijbiomac.2023.126394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The semi-rigidity of the polylactic acid (PLA) molecular chain makes it brittle, poor impact resistance and barrier properties, which severely limits its practical applications. In this paper, a bio-based reactive plasticizer epoxy soybean oil (ESO) was used to improve the mechanical and barrier properties of maleic anhydride grafted polylactic acid (MAPLA) by the chemical reaction between the epoxy and anhydride group. Firstly, the optimum curing conditions were 93.5 °C, 100 °C, and 110.8 °C for 2 h. The effects of different mass fractions of ESO on the properties of MAPLA-ESO (ME) films were systematically investigated. It was found that when the content of ESO was 10 wt%, the tensile properties of the resulting ME films were the best, with a tensile strength of 35.2 MPa. And it had an elongation at break of 20.0 % and toughness of 5.4 MJ/m3, which increased to 690 % and 675 %, respectively, compared with pure MAPLA films. The chemically crosslinked ME films also displayed excellent water resistance, well degradation, low migration properties, and better performance than that of commercial paper straws and PLA straws, exhibiting great application potential as degradable disposable straws. Therefore, this work provides an effective way to develop high-performance, green, and degradable PLA films and products.
Collapse
Affiliation(s)
- Xiaobing Xu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jing Yu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Fangfei Yang
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yilu Li
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongxian Ou
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhen Liu
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Tao Liu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qingwen Wang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Frone AN, Popa MS, Uşurelu CD, Panaitescu DM, Gabor AR, Nicolae CA, Raduly MF, Zaharia A, Alexandrescu E. Bio-Based Poly(lactic acid)/Poly(butylene sebacate) Blends with Improved Toughness. Polymers (Basel) 2022; 14:polym14193998. [PMID: 36235947 PMCID: PMC9572606 DOI: 10.3390/polym14193998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
A series of poly(butylene sebacate) (PBSe) aliphatic polyesters were successfully synthesized by the melt polycondensation of sebacic acid (Se) and 1,4-butanediol (BDO), two monomers manufactured on an industrial scale from biomass. The number average molecular weight (Mn) in the range from 6116 to 10,779 g/mol and the glass transition temperature (Tg) of the PBSe polyesters were tuned by adjusting the feed ratio between the two monomers. Polylactic acid (PLA)/PBSe blends with PBSe concentrations between 2.5 to 20 wt% were obtained by melt compounding. For the first time, PBSe’s effect on the flexibility and toughness of PLA was studied. As shown by the torque and melt flow index (MFI) values, the addition of PBSe endowed PLA with both enhanced melt processability and flexibility. The tensile tests and thermogravimetric analysis showed that PLA/PBSe blends containing 20 wt% PBSe obtained using a BDO molar excess of 50% reached an increase in elongation at break from 2.9 to 108%, with a negligible decrease in Young’s modulus from 2186 MPa to 1843 MPa, and a slight decrease in thermal performances. These results demonstrated the plasticizing efficiency of the synthesized bio-derived polyesters in overcoming PLA’s brittleness. Moreover, the tunable properties of the resulting PBSe can be of great industrial interest in the context of circular bioeconomy.
Collapse
|
5
|
Mele G, Mazzetto SE, Lomonaco D. Heterocyclic Compounds from Renewable Resources. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Synthesis of esters derived from 2,5-furandicarboxylic acid and study of its plasticizing effects on poly(lactic acid). JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Alhanish A, Abu Ghalia M. Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review. Biotechnol Prog 2021; 37:e3210. [PMID: 34499430 DOI: 10.1002/btpr.3210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
The demand for biobased materials for various end-uses in the bioplastic industry is substantially growing due to increasing awareness of health and environmental concerns, along with the toxicity of synthetic plasticizers such as phthalates. This fact has stimulated new regulations requiring the replacement of synthetic conventional plasticizers, particularly for packaging applications. Biobased plasticizers have recently been considered as essential additives, which may be used during the processing of compostable polymers to enormously boost biobased packaging applications. The development and utilization of biobased plasticizers derived from epoxidized soybean oil, castor oil, cardanol, citrate, and isosorbide have been broadly investigated. The synthesis of biobased plasticizers derived from renewable feedstocks and their impact on packaging material performance have been emphasized. Moreover, the effect of biobased plasticizer concentration, interaction, and compatibility on the polymer properties has been examined. Recent developments have resulted in the replacement of synthetic plasticizers by biobased counterparts. Particularly, this has been the case for some biodegradable thermoplastics-based packaging applications.
Collapse
Affiliation(s)
- Atika Alhanish
- Department of Chemical Engineering, Faculty of Petroleum and Natural Gas Engineering, University of Zawia, Zawia, Libya
| | | |
Collapse
|
8
|
Effect of thermo-oxidation on loss of plasticizers, on crystalline features and on properties in a metallocene isotactic polypropylene. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Rigoussen A, Raquez JM, Dubois P, Verge P. A dual approach to compatibilize PLA/ABS immiscible blends with epoxidized cardanol derivatives. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Processing of Super Tough Plasticized PLA by Rotational Molding. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/3835829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work is aimed at studying the suitability of polylactic acid (PLA) plasticized by two cardanol derivatives, i.e., cardanol and epoxidized cardanol acetate, in rotational molding, for the production of hollow items. For this purpose, plasticized PLA samples were obtained by melt mixing and then processed by a lab-scale rotational molding equipment. For comparison, poly(ethylene glycole), PEG, and plasticized PLA samples were also produced. Despite the very low cooling rates attained in rotational molding, completely amorphous samples were obtained with neat PLA and PLA plasticized by cardanol derivatives. In contrast, PEG plasticized PLA showed a very high degree of crystallinity, as highlighted by DSC and XRD analysis, which made the extraction of the rotomolded box-shaped specimens impossible. The plasticizing effectiveness of cardanol derivatives was proven by tensile testing of rotational molded prototypes, which highlighted the reduced modulus and strength and improved strain to break, compared to neat PLA. Therefore, efficient toughening of PLA can be attained by the use of the two cardanol derived plasticizers, which involves a significant reduction of the polymer glass transition, as well as a reduced increase of the crystallization kinetic. On the other hand, the reduction of the glass transition temperature due to the addition of plasticizer is responsible for significant crystallization effects even during ageing at room temperature, which involves significant embrittlement of the material.
Collapse
|
11
|
Greco A, Ferrari F, Maffezzoli A. Mechanical properties of poly(lactid acid) plasticized by cardanol derivatives. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2018.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Jia P, Xia H, Tang K, Zhou Y. Plasticizers Derived from Biomass Resources: A Short Review. Polymers (Basel) 2018; 10:E1303. [PMID: 30961228 PMCID: PMC6401779 DOI: 10.3390/polym10121303] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022] Open
Abstract
With rising environmental concerns and depletion of petrochemical resources, biomass-based chemicals have been paid more attention. Polyvinyl chloride (PVC) plasticizers derived from biomass resources (vegetable oil, cardanol, vegetable fatty acid, glycerol and citric acid) have been widely studied to replace petroleum-based o-phthalate plasticizers. These bio-based plasticizers mainly include epoxidized plasticizer, polyester plasticizer, macromolecular plasticizer, flame retardant plasticizer, citric acid ester plasticizer, glyceryl ester plasticizer and internal plasticizer. Bio-based plasticizers with the advantages of renewability, degradability, hypotoxicity, excellent solvent resistant extraction and plasticizing performances make them potential to replace o-phthalate plasticizers partially or totally. In this review, we classify different types of bio-based plasticizers according to their chemical structure and function, and highlight recent advances in multifunctional applications of bio-based plasticizers in PVC products. This study will increase the interest of researchers in bio-based plasticizers and the development of new ideas in this field.
Collapse
Affiliation(s)
- Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF); Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University; Key Lab of Biomass Energy and Materials, 16 Suojin North Road, Nanjing 210042, China.
| | - Haoyu Xia
- College of Chemical Engineering, Nanjing Tech University, 30 Pu Zhu Road, Nanjing 211800, China.
| | - Kehan Tang
- College of Chemical Engineering, Nanjing Tech University, 30 Pu Zhu Road, Nanjing 211800, China.
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF); Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University; Key Lab of Biomass Energy and Materials, 16 Suojin North Road, Nanjing 210042, China.
| |
Collapse
|
13
|
Lee S, Park MS, Shin J, Kim YW. Effect of the individual and combined use of cardanol-based plasticizers and epoxidized soybean oil on the properties of PVC. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2017.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Koh JJ, Zhang X, He C. Fully biodegradable Poly(lactic acid)/Starch blends: A review of toughening strategies. Int J Biol Macromol 2017; 109:99-113. [PMID: 29248552 DOI: 10.1016/j.ijbiomac.2017.12.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023]
Abstract
Polylactic acid (PLA) and Starch are both bio-based biodegradable polymers that have properties that are complementary to each other. PLA/starch blend exploits the good mechanical property of PLA and the low cost of Starch. However, PLA/Starch blend is intrinsically brittle. This paper reviews the current state of arts in toughening of PLA/Starch blend, which are categorized as: Additive Plasticization, Mixture Softening, Elastomer Toughening and Interphase Compatibilization. These strategies are not mutually exclusive and can be applied jointly in a single blend, opening up a wide range of toughening techniques that can be employed in PLA/Starch blend. Even though significant progress has been made in this area, there is still much room for research, in order to achieve easy to process, fully bio-based and completely biodegradable PLA/Starch blends that have mechanical properties suitable for a wide range of applications.
Collapse
Affiliation(s)
- J Justin Koh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore; Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 73 Nanyang Drive, 637662, Singapore
| | - Xiwen Zhang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 73 Nanyang Drive, 637662, Singapore
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| |
Collapse
|
15
|
Jia P, Zhang M, Hu L, Wang R, Sun C, Zhou Y. Cardanol Groups Grafted on Poly(vinyl chloride)-Synthesis, Performance and Plasticization Mechanism. Polymers (Basel) 2017; 9:E621. [PMID: 30965920 PMCID: PMC6418606 DOI: 10.3390/polym9110621] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 11/16/2022] Open
Abstract
Internally plasticized poly(vinyl chloride) (PVC) materials are investigated via grafting of propargyl ether cardanol (PEC). The chemical structure of the materials was studied by FT-IR and ¹H NMR. The performace of the obtained internally plasticized PVC materials was also investigated with TGA, DSC and leaching tests. The results showed that grafting of propargyl ether cardanol (PEC) on PVC increased the free volume and distance of PVC chains, which efficiently decreased the glass transition temperature (Tg). No migration was found in the leaching tests for internally plasticized PVC films compared with plasticized PVC materials with commercial plasticizer dioctyl phthalate (DOP). The internal plasticization mechanism was also disscussed according to lubrication theory and free volume theory. This work provides a meaningful strategy for designing no-migration PVC materials by introducing cardanol groups as branched chains.
Collapse
Affiliation(s)
- Puyou Jia
- National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration, and Key Lab of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| | - Meng Zhang
- National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration, and Key Lab of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
- Institute of New Technology of Forestry, Chinese Academy of Forest (CAF), Beijing 100091, China.
| | - Lihong Hu
- National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration, and Key Lab of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
- Institute of New Technology of Forestry, Chinese Academy of Forest (CAF), Beijing 100091, China.
| | - Rui Wang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Chao Sun
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Yonghong Zhou
- National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration, and Key Lab of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| |
Collapse
|
16
|
Zhu JY, Tang CH, Yin SW, Yang XQ. Development and characterisation of polylactic acid-gliadin bilayer/trilayer films as carriers of thymol. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun-You Zhu
- Research and Development Center of Food Proteins; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
| | - Chuan-He Tang
- Research and Development Center of Food Proteins; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
| | - Shou-Wei Yin
- Research and Development Center of Food Proteins; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
17
|
In-depth investigation on the effect and role of cardanol in the compatibilization of PLA/ABS immiscible blends by reactive extrusion. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|