1
|
Polo G, Lionetto F, Giordano ME, Lionetto MG. Interaction of Micro- and Nanoplastics with Enzymes: The Case of Carbonic Anhydrase. Int J Mol Sci 2024; 25:9716. [PMID: 39273668 PMCID: PMC11396312 DOI: 10.3390/ijms25179716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) have emerged as significant environmental pollutants with potential detrimental effects on ecosystems and human health. Several studies indicate their interaction with enzymes; this topic represents a multifaceted research field encompassing several areas of interest from the toxicological and ecotoxicological impact of MPs and NPs on humans and wildlife to the biodegradation of plastics by microbial enzymes. This review aims to provide a critical analysis of the state-of-the-art knowledge of the interaction of MPs and NPs on the enzyme carbonic anhydrase (CA), providing recent insights, analyzing the knowledge gaps in the field, and drawing future perspectives of the research and its application. CA is a widespread and crucial enzyme in various organisms; it is critical for various physiological processes in animals, plants, and bacteria. It catalyzes the reversible hydration of CO2, which is essential for respiration, acid-base balance, pH homeostasis, ion transport, calcification, and photosynthesis. Studies demonstrate that MPs and NPs can inhibit CA activity with mechanisms including adsorption to the enzyme surface and subsequent conformational changes. In vitro and in silico studies highlight the role of electrostatic and hydrophobic interactions in these processes. In vivo studies present mixed results, which are influenced by factors like particle type, size, concentration, and organism type. Moreover, the potentiality of the esterase activity of CA for plastic degradation is discussed. The complexity of the interaction between CA and MPs/NPs underscores the need for further research to fully understand the ecological and health impacts of MPs and NPs on CA activity and expression and glimpses of the potentiality and perspectives in this field.
Collapse
Affiliation(s)
- Gregorio Polo
- Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Elena Giordano
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
2
|
Kapoor A, Raghunathan M, Lal B, Kumar P, Srivastava N, Devnani GL, Pal DB. Sustainable valorization of waste plastic into nanostructured materials for environmental, energy, catalytic and biomedical applications: A review. CHEMOSPHERE 2024; 364:143279. [PMID: 39251163 DOI: 10.1016/j.chemosphere.2024.143279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
The extensive production and utilization of plastic products are inevitable in the current scenario. However, the non-degradable nature of waste plastic generated after use poses a grave concern. Comprehensive efforts are being made to find viable technological solutions to manage the escalating challenge of waste plastic. This review focuses on the progress made in transformation of waste plastic into value-added nanomaterials. An overview is provided of the waste plastic issue on a global level and its ecological impacts. Currently established methodologies for waste plastic management are examined, along with their limitations. Subsequently, state-of-the-art techniques for converting waste plastic into nanostructured materials are presented, with a critical evaluation of their distinct merits and demerits. Several demonstrated technologies and case studies are discussed regarding the utilization of these nanomaterials in diverse applications, including environmental remediation, energy production and storage, catalytic processes, sensors, drug delivery, bioimaging, regenerative medicine and advanced packaging materials. Moreover, challenges and prospects in the commercial level production of waste plastic-derived nanomaterials and their adoption for industrial and practical usage are highlighted. Overall, this work underscores the potential of transforming waste plastic into nanostructured materials for multifaceted applications. The valorization approach presented here offers an integration of waste plastic management and sustainable nanotechnology. The development of such technologies should pave the way toward a circular economy and the attainment of sustainable development goals.
Collapse
Affiliation(s)
- Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, 208002, India
| | - Muthukumar Raghunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Basant Lal
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - Praveen Kumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, Uttar Pradesh, India; Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - G L Devnani
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, 208002, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, 208002, India.
| |
Collapse
|
3
|
Okal EJ, Heng G, Magige EA, Khan S, Wu S, Ge Z, Zhang T, Mortimer PE, Xu J. Insights into the mechanisms involved in the fungal degradation of plastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115202. [PMID: 37390726 DOI: 10.1016/j.ecoenv.2023.115202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Fungi are considered among the most efficient microbial degraders of plastics, as they produce salient enzymes and can survive on recalcitrant compounds with limited nutrients. In recent years, studies have reported numerous species of fungi that can degrade different types of plastics, yet there remain many gaps in our understanding of the processes involved in biodegradation. In addition, many unknowns need to be resolved regarding the fungal enzymes responsible for plastic fragmentation and the regulatory mechanisms which fungi use to hydrolyse, assimilate and mineralize synthetic plastics. This review aims to detail the main methods used in plastic hydrolysis by fungi, key enzymatic and molecular mechanisms, chemical agents that enhance the enzymatic breakdown of plastics, and viable industrial applications. Considering that polymers such as lignin, bioplastics, phenolics, and other petroleum-based compounds exhibit closely related characteristics in terms of hydrophobicity and structure, and are degraded by similar fungal enzymes as plastics, we have reasoned that genes that have been reported to regulate the biodegradation of these compounds or their homologs could equally be involved in the regulation of plastic degrading enzymes in fungi. Thus, this review highlights and provides insight into some of the most likely regulatory mechanisms by which fungi degrade plastics, target enzymes, genes, and transcription factors involved in the process, as well as key limitations to industrial upscaling of plastic biodegradation and biological approaches that can be employed to overcome these challenges.
Collapse
Affiliation(s)
- Eyalira Jacob Okal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Gui Heng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Ephie A Magige
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Sehroon Khan
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, 28100 Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Shixi Wu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Zhiqiang Ge
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Tianfu Zhang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Peter E Mortimer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
4
|
Tanunchai B, Ji L, Schröder O, Gawol SJ, Geissler A, Wahdan SFM, Buscot F, Kalkhof S, Schulze ED, Noll M, Purahong W. Fate of a biodegradable plastic in forest soil: Dominant tree species and forest types drive changes in microbial community assembly, influence the composition of plastisphere, and affect poly(butylene succinate-co-adipate) degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162230. [PMID: 36796697 DOI: 10.1016/j.scitotenv.2023.162230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Poly(butylene succinate-co-adipate) (PBSA) degradation and its plastisphere microbiome in cropland soils have been studied; however, such knowledge is limited in the case of forest ecosystems. In this context, we investigated: i) the impact of forest types (conifer and broadleaved forests) on the plastisphere microbiome and its community assembly, ii) their link to PBSA degradation, and iii) the identities of potential microbial keystone taxa. We determined that forest type significantly affected microbial richness (F = 5.26-9.88, P = 0.034 to 0.006) and fungal community composition (R2 = 0.38, P = 0.001) of the plastisphere microbiome, whereas its effects on microbial abundance and bacterial community composition were not significant. The bacterial community was governed by stochastic processes (mainly homogenizing dispersal), whereas the fungal community was driven by both stochastic and deterministic processes (drift and homogeneous selection). The highest molar mass loss was found for PBSA degraded under Pinus sylvestris (26.6 ± 2.6 to 33.9 ± 1.8 % (mean ± SE) at 200 and 400 days, respectively), and the lowest molar mass loss was found under Picea abies (12.0 ± 1.6 to 16.0 ± 0.5 % (mean ± SE) at 200 and 400 days, respectively). Important fungal PBSA decomposers (Tetracladium) and atmospheric dinitrogen (N2)-fixing bacteria (symbiotic: Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Methylobacterium and non-symbiotic: Mycobacterium) were identified as potential keystone taxa. The present study is among the first to determine the plastisphere microbiome and its community assembly processes associated with PBSA in forest ecosystems. We detected consistent biological patterns in the forest and cropland ecosystems, indicating a potential mechanistic interaction between N2-fixing bacteria and Tetracladium during PBSA biodegradation.
Collapse
Affiliation(s)
- Benjawan Tanunchai
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Li Ji
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; School of Forestry, Central South of Forestry and Technology, 410004 Changsha, PR China
| | - Olaf Schröder
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Susanne Julia Gawol
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Andreas Geissler
- Department of Macromolecular Chemistry and Paper Chemistry, Technical University of Darmstadt, Darmstadt D-64287, Germany
| | - Sara Fareed Mohamed Wahdan
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; Department of Botany and Microbiology, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - François Buscot
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Stefan Kalkhof
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Ernst-Detlef Schulze
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Matthias Noll
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany.
| | - Witoon Purahong
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
5
|
Biodegradation of PBSA Films by Elite Aspergillus Isolates and Farmland Soil. Polymers (Basel) 2022; 14:polym14071320. [PMID: 35406195 PMCID: PMC9002719 DOI: 10.3390/polym14071320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Plastic films are widely used in current agricultural practices; however, most mulch films used are discarded and buried in the land after harvest, having adverse environmental impacts. To solve this environmental problem, the demand for biodegradable mulch has been increasing in recent years. Polybutylene succinate-co-adipate (PBSA) is a biodegradable polymer with good ductility and can be used for packaging and mulching. In this study, we isolated two elite fungal strains for PBSA degradation from farmlands, i.e., Aspergillus fumigatus L30 and Aspergillus terreus HC, and the latter showed better degradation ability than the former. It is noteworthy that biodegradation of PBSA by A. terreus is reported for the first time, which revealed unique characteristics. In the soil burial test, even the soil with relatively poor degradation ability could be improved by the addition of elite fungal mycelia. In substrate specificity analyses of soil samples, PBSA could induce the synthesis of lipolytic enzymes of indigenous microbes to degrade substrates with medium and long carbon chains in soil. Furthermore, PBSA residues or fungal mycelia supplementation in soils had no adverse effect on the seed germination rate, seedling growth, or mature plant weight of the test green leafy vegetable. Taken together, the results of this study not only advance our understanding of the biodegradation of PBSA films by filamentous fungi but also provide insight into improving the efficiency of biodegradation in soil environments.
Collapse
|
6
|
Liu X, Liu S, Li K, Feng S, Fan Y, Peng L, Wang X, Chen D, Xiong C, Bai W, Zhang L. Preparation and degradation characteristics of biodegradable elastic poly (1,3-trimethylene carbonate) network. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Guo J, Xiong Y, Kang T, Zhu H, Yang Q, Qin C. Effect of formaldehyde exposure on bacterial communities in simulating indoor environments. Sci Rep 2021; 11:20575. [PMID: 34663860 PMCID: PMC8523742 DOI: 10.1038/s41598-021-00197-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
Indoor formaldehyde (CH2O) exceeding the recommended level is a severe threat to human health. Few studies have investigated its effect on indoor surface bacterial communities, affecting habitants' health. This study used 20-L glass containers to mimic the indoor environment with bacterial inputs from human oral respiration. The behavior of bacterial communities responding to CH2O varied among the different CH2O levels. The bacterial community structure significantly changed over time in the 0.054 mg·m-3 CH2O group, which varied from the 0.1 mg·m-3 and 0.25 mg·m-3 CH2O groups. The Chao1 and Shannon index significantly increased in the 0.054 mg·m-3 CH2O group at 6 week, while they remained unchanged in the 0.25 mg·m-3 CH2O group. At 12 week, the Chao1 significantly increased in the 0.25 mg·m-3 CH2O group, while it remained unchanged in the 0.054 mg·m-3 CH2O group. Only a few Operational Taxonomic Units (OTUs) significantly correlated with the CH2O concentration. CH2O-induced OTUs mainly belong to the Proteobacteria and Firmicutes. Furthermore, bacterial communities formed at 6 or 12 weeks differed significantly among different CH2O levels. Functional analysis of bacterial communities showed that inferred genes related to chemical degradation and diseases were the highest in the 0.25 mg·m-3 CH2O group at 12 weeks. The development of nematodes fed with bacteria collected at 12 weeks was applied to evaluate the bacterial community's hazards. This showed significantly impaired growth in the 0.1 mg·m-3 and 0.25 mg·m-3 CH2O groups. These findings confirmed that CH2O concentration and exposure time could affect the indoor bacterial community and formed bacterial communities with a possibly more significant hazard to human health after long-term exposure to high CH2O levels.
Collapse
Affiliation(s)
- Jianguo Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Pan Jia Yuan Nan Li No. 5, Chao Yang District, Beijing, 100021, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Yi Xiong
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Taisheng Kang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Pan Jia Yuan Nan Li No. 5, Chao Yang District, Beijing, 100021, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Hua Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Pan Jia Yuan Nan Li No. 5, Chao Yang District, Beijing, 100021, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Pan Jia Yuan Nan Li No. 5, Chao Yang District, Beijing, 100021, China. .,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, China.
| |
Collapse
|
8
|
Saravanan A, Kumar PS, Vo DVN, Jeevanantham S, Karishma S, Yaashikaa PR. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126451. [PMID: 34174628 DOI: 10.1016/j.jhazmat.2021.126451] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 05/17/2023]
Abstract
Industrialization and other human anthropogenic activities cause serious threats to the environment. The toxic pollutants can cause detrimental diseases on diverse living beings in their respective ecosystems. Bioremediation is one of the efficient remediation methods in which the toxic pollutants are removed from the environment by the application of microorganisms or their biologically active products (enzymes). Typically, the microorganisms in the environment produce various enzymes to immobilize and degrade the toxic environmental pollutants by utilizing them as a substrate for their growth and development. Both the bacterial and fungal enzymes can degrade the toxic pollutants present in the environment and convert them into non-toxic forms through their catalytic reaction mechanism. Hydrolases, oxidoreductases, dehalogenases, oxygenases and transferases are the major classes of microbial enzymes responsible for the degradation of most of the toxic pollutants in the environment. Recently, there are different immobilizations and genetic engineering techniques have been developed to enhance enzyme efficiency and diminish the process cost for pollutant removal. This review focused on enzymatic removal of toxic pollutants such as heavy metals, dyes, plastics and pesticides in the environment. Current trends and further expansion for efficient removal of toxic pollutants through enzymatic degradation are also reviewed in detail.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140315. [DOI: 10.1016/j.bbapap.2019.140315] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023]
|
10
|
Adıgüzel AO. Production and characterization of thermo-, halo- and solvent-stable esterase from Bacillus mojavensis TH309. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1715370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ali Osman Adıgüzel
- Department of Molecular Biology and Genetics, Science and Letter Faculty, University of Ondokuz Mayıs, Samsun, Turkey
| |
Collapse
|
11
|
Purification, identification and characterization of an esterase with high enantioselectivity to (S)-ethyl indoline-2-carboxylate. Biotechnol Lett 2019; 41:1223-1232. [DOI: 10.1007/s10529-019-02727-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/20/2019] [Indexed: 01/28/2023]
|