1
|
Leal MRS, Lima LRA, Rodrigues NER, Soares PAG, Carneiro-da-Cunha MG, Albuquerque PBS. A review on the biological activities and the nutraceutical potential of chitooligosaccharides. Carbohydr Res 2025; 548:109336. [PMID: 39637700 DOI: 10.1016/j.carres.2024.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Chitooligosaccharides (CHOS) or chitosan oligosaccharides (COS) are oligomers mainly composed of d-glucosamine (GlcN) units and structured in a positively charged, basic, amino molecule obtained from the degradation of chitin/chitosan through physical, chemical, or enzymatic methods. CHOS display physicochemical properties attractive to applications from the food to the biomedical field, such as non-toxicity to humans, high water solubility, low viscosity, biocompatibility, and biodegradability. These properties also allow CHOS to exert important biological activities, for example, antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, antitumor, and hypocholesterolemic ones, besides to exhibit applications in food systems, technological, and nutraceutical potential. Therefore, this study summarized the synthesis and chemical structure, biological functions, and mechanisms of action of CHOS; with this, we aimed to contribute to the knowledge about the application of CHOS from the food to the biomedical industries.
Collapse
Affiliation(s)
- Makyson R S Leal
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Luiza R A Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil
| | - Natalie E R Rodrigues
- Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Paulo A G Soares
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Maria G Carneiro-da-Cunha
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Priscilla B S Albuquerque
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil.
| |
Collapse
|
2
|
Petrásková L, Bojarová P. Recent trends in the separation and analysis of chitooligomers. Carbohydr Res 2025; 548:109337. [PMID: 39642757 DOI: 10.1016/j.carres.2024.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Chitosan is a widely used linear biopolymer composed mainly of glucosamine and to a lesser extent of N-acetylglucosamine units. Many biological activities of chitosan are attributed to its shorter oligomeric chains, which consist of chitosan prepared either by enzyme activity (lysozyme, bacterial chitinase) or chemically by acid-catalyzed hydrolysis (e.g. in the stomach). However, these processes always result in a mixture of shorter chitooligosaccharides with varying degrees of acetylation whereas for relevant results of biological studies it is necessary to work with a precisely defined material. In this review, we provide an overview and comparison of analytical methods leading to the determination of the degree of polymerization (DP), the degree of acetylation (DA), the fraction of acetylation (FA) and the acetylation patterns (PA) of chitooligosaccharide chains and of the current state of knowledge on chitooligosaccharide separation. This review aims to present the most promising routes to well-defined low molecular weight chitosan with low dispersity.
Collapse
Affiliation(s)
- Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200, Prague, Czech Republic.
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200, Prague, Czech Republic
| |
Collapse
|
3
|
Li H, He W, Xu S, Wang R, Ge S, Xu H, Shan Y, Ding S. Grafting chlorogenic acid enhanced the antioxidant activity of curdlan oligosaccharides and modulated gut microbiota. Food Chem X 2024; 21:101075. [PMID: 38205160 PMCID: PMC10776644 DOI: 10.1016/j.fochx.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, the effects of grafting chlorogenic acid (CA) on the antioxidant and probiotic activities of curdlan oligosaccharides (CDOS) were investigated. CDOS with degrees of polymerization of 3-6 was first obtained by degradation of curdlan with hydrogen peroxide and then grafted with CA using a free radical-mediated method under an ultrasonication-assisted Fenton system. The thermal stability and antioxidant ability of CDOS were enhanced after grafting with CA. In vitro fermentation, supplementation of CDOS-CA stimulated the proliferation of Prevotella and Faecalibacterium while inhibiting the growth of harmful microbiota. Notably, the concentration of total short-chain fatty acids and the relative abundance of beneficial bacteria markedly increased after fermentation of CDOS-CA, indicating that CA grafting could improve the probiotic activity of CDOS. Overall, the covalent binding of CDOS and CA could enhance the antioxidant and probiotic activities of CDOS, suggesting potential improvements in gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Huan Li
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
| | - Wenjiang He
- R&D Centre, Infinitus (China) Company Ltd., Guangzhou, 510520, China
| | - Saiqing Xu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Shuai Ge
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Haishan Xu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Yang Shan
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Shenghua Ding
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| |
Collapse
|
4
|
Mittal A, Singh A, Buatong J, Saetang J, Benjakul S. Chitooligosaccharide and Its Derivatives: Potential Candidates as Food Additives and Bioactive Components. Foods 2023; 12:3854. [PMID: 37893747 PMCID: PMC10606384 DOI: 10.3390/foods12203854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Chitooligosaccharide (CHOS), a depolymerized chitosan, can be prepared via physical, chemical, and enzymatic hydrolysis, or a combination of these techniques. The superior properties of CHOS have attracted attention as alternative additives or bioactive compounds for various food and biomedical applications. To increase the bioactivities of a CHOS, its derivatives have been prepared via different methods and were characterized using various analytical methods including FTIR and NMR spectroscopy. CHOS derivatives such as carboxylated CHOS, quaternized CHOS, and others showed their potential as potent anti-inflammatory, anti-obesity, neuroprotective, and anti-cancer agents, which could further be used for human health benefits. Moreover, enhanced antibacterial and antioxidant bioactivities, especially for a CHOS-polyphenol conjugate, could play a profound role in shelf-life extension and the safety assurance of perishable foods via the inhibition of spoilage microorganisms and pathogens and lipid oxidation. Also, the effectiveness of CHOS derivatives for shelf-life extension can be augmented when used in combination with other preservative technologies. Therefore, this review provides an overview of the production of a CHOS and its derivatives, as well as their potential applications in food as either additives or nutraceuticals. Furthermore, it revisits recent advancements in translational research and in vivo studies on CHOS and its derivatives in the medical-related field.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Jirayu Buatong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Nguyen THP, Le NAT, Tran PT, Bui DD, Nguyen QH. Preparation of water-soluble chitosan oligosaccharides by oxidative hydrolysis of chitosan powder with hydrogen peroxide. Heliyon 2023; 9:e19565. [PMID: 37681167 PMCID: PMC10480655 DOI: 10.1016/j.heliyon.2023.e19565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Chitosan (CS) is only soluble in weak acid medium, thereby limiting its wide utilisation in the field of biomedicine, food, and agriculture. In this report, we present a method for preparing water-soluble CS oligosaccharides (COSs) at high concentration (∼10%, w/v) via the oxidative hydrolysis of CS powder with molecular weight (Mw) ∼90,000 g/mol) in 2% H2O2 solution at ambient temperature by a two-step process, namely, the heterogeneous hydrolysis step and homogeneous hydrolysis step. The resultant COSs were characterised by gel permeation chromatography (GPC), fourier transforms infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), proton nuclear magnetic resonance spectroscopy (1H NMR) and X-ray diffraction (XRD) spectroscopy. The resulting products were composed of COSs (Mw of 2000-6600 g/mol) that were completely soluble in water. The results also indicated that the structure of COSs was almost unchanged compared with the original CS unless Mw was low. Accordingly, COSs with low Mw (∼2000 g/mol) and high concentration (10%, w/v) could be effectively prepared by the oxidative hydrolysis of CS powder using hydrogen peroxide under ambient conditions.
Collapse
Affiliation(s)
- Trong Hoanh Phong Nguyen
- Graduate University of Science and Technology-Vietnam Academy of Science and Technology, Hanoi 10000, Viet Nam
- Vietnam Atomic Energy Institute, Hanoi 10000, Viet Nam
| | - Nghiem Anh Tuan Le
- Institute of Applied Materials Science-Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Phuoc Tho Tran
- Institute of Applied Materials Science-Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Duy Du Bui
- Graduate University of Science and Technology-Vietnam Academy of Science and Technology, Hanoi 10000, Viet Nam
- Institute of Applied Materials Science-Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | | |
Collapse
|
6
|
Gonçalves CGE, Lourenço LDFH, Philippsen HK, Santos AS, Santos LND, Ferreira NR. Crude Enzyme Concentrate of Filamentous Fungus Hydrolyzed Chitosan to Obtain Oligomers of Different Sizes. Polymers (Basel) 2023; 15:polym15092079. [PMID: 37177223 PMCID: PMC10181246 DOI: 10.3390/polym15092079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Chitosan is a non-cytotoxic polysaccharide that, upon hydrolysis, releases oligomers of different sizes that may have antioxidant, antimicrobial activity and the inhibition of cancer cell growth, among other applications. It is, therefore, a hydrolysis process with great biotechnological relevance. Thus, this study aims to use a crude enzyme concentrate (CEC) produced by a filamentous fungus to obtain oligomers with different molecular weights. The microorganism was cultivated in a liquid medium (modified Czapeck-with carboxymethylcellulose as enzyme inducer). The enzymes present in the CEC were identified by LC-MS/MS, with an emphasis on cellobiohydrolase (E.C 3.2.1.91). The fungus of the Aspergillus genus was identified by amplifying the ITS1-5.8S-ITS2 rDNA region and metaproteomic analysis, where the excreted enzymes were identified with sequence coverage greater than 84% to A. nidulans. Chitosan hydrolysis assays compared the CEC with the commercial enzyme (Celluclast 1.5 L®). The ability to reduce the initial molecular mass of chitosan by 47.80, 75.24, and 93.26% after 2.0, 5.0, and 24 h of reaction, respectively, was observed. FTIR analyses revealed lower absorbance of chitosan oligomers' spectral signals, and their crystallinity was reduced after 3 h of hydrolysis. Based on these results, we can conclude that the crude enzyme concentrate showed a significant technological potential for obtaining chitosan oligomers of different sizes.
Collapse
Affiliation(s)
| | | | - Hellen Kempfer Philippsen
- Faculty of Biology, Socioenvironmental and Water Resources Institute, Federal Rural University of the Amazon, Campus Belém, Belem 66077-830, PA, Brazil
| | - Alberdan Silva Santos
- Faculty of Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Belem 66075-110, PA, Brazil
| | - Lucely Nogueira Dos Santos
- Graduate Program in Food Science and Technology, Federal University of Pará, Belem 66075-110, PA, Brazil
| | - Nelson Rosa Ferreira
- Graduate Program in Food Science and Technology, Federal University of Pará, Belem 66075-110, PA, Brazil
- Faculty of Food Engineering, Technology Institute, Federal University of Pará, Belem 66075-110, PA, Brazil
| |
Collapse
|
7
|
Zhao XP, Liu J, Sui ZJ, Xu MJ, Zhu ZY. Preparation and antibacterial effect of chitooligosaccharides monomers with different polymerization degrees from crab shell chitosan by enzymatic hydrolysis. Biotechnol Appl Biochem 2023; 70:164-174. [PMID: 35307889 DOI: 10.1002/bab.2339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/27/2022] [Indexed: 11/08/2022]
Abstract
This study aimed to explore the structure and antibacterial properties of chitooligosaccharide monomers with different polymerization degrees and to provide a theoretical basis for inhibiting Salmonella infection. Chitosan was used as a raw material to prepare and separate low-molecular-weight chitooligosaccharides. Chitobiose, chitotriose, and chitotetraose were obtained by gradient elution with cation exchange resin. The molecular weights and acetyl groups of the three monomers were determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and nuclear magnetic resonance (NMR), respectively. Three chitooligosaccharide monomers were used to explore the antibacterial effect on Salmonella. The results showed that the degree of deacetylation of chitosan was 92.6%, and the enzyme activity of chitosanase was 102.53 U/g. Within 18 h, chitosan was enzymatically hydrolyzed to chitooligosaccharides containing chitobiose, chitotriose, and chitotetraose, which were analyzed by thin-layer chromatography (TLC) and MALDI-TOF. MALD-TOF and TLC showed that the separation of monomers with ion exchange resins was effective, and NMR showed that there was no acetyl group. Chitobiose had a poor inhibitory effect on Salmonella, and chitotriose and chitotetraose had equivalent antibacterial effects.
Collapse
Affiliation(s)
- Xin-Peng Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jie Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zhu-Jun Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Meng-Jie Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
9
|
Khayrova A, Lopatin S, Shagdarova B, Sinitsyna O, Sinitsyn A, Varlamov V. Evaluation of Antibacterial and Antifungal Properties of Low Molecular Weight Chitosan Extracted from Hermetia illucens Relative to Crab Chitosan. Molecules 2022; 27:577. [PMID: 35056890 PMCID: PMC8777618 DOI: 10.3390/molecules27020577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/04/2023] Open
Abstract
This study shows the research on the depolymerisation of insect and crab chitosans using novel enzymes. Enzyme preparations containing recombinant chitinase Chi 418 from Trichoderma harzianum, chitinase Chi 403, and chitosanase Chi 402 from Myceliophthora thermophila, all belonging to the family GH18 of glycosyl hydrolases, were used to depolymerise a biopolymer, resulting in a range of chitosans with average molecular weights (Mw) of 6-21 kDa. The depolymerised chitosans obtained from crustaceans and insects were studied, and their antibacterial and antifungal properties were evaluated. The results proved the significance of the chitosan's origin, showing the potential of Hermetia illucens as a new source of low molecular weight chitosan with an improved biological activity.
Collapse
Affiliation(s)
- Adelya Khayrova
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.L.); (B.S.); (V.V.)
- Entoprotech Ltd., Skolkovo Innovation Centre, 121205 Moscow, Russia
| | - Sergey Lopatin
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.L.); (B.S.); (V.V.)
| | - Balzhima Shagdarova
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.L.); (B.S.); (V.V.)
| | - Olga Sinitsyna
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia; (O.S.); (A.S.)
| | - Arkady Sinitsyn
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia; (O.S.); (A.S.)
| | - Valery Varlamov
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.L.); (B.S.); (V.V.)
| |
Collapse
|
10
|
Jafari H, Delporte C, Bernaerts KV, De Leener G, Luhmer M, Nie L, Shavandi A. Development of marine oligosaccharides for potential wound healing biomaterials engineering. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
11
|
Xing R, Xu C, Gao K, Yang H, Liu Y, Fan Z, Liu S, Qin Y, Yu H, Li P. Characterization of Different Salt Forms of Chitooligosaccharides and Their Effects on Nitric Oxide Secretion by Macrophages. Molecules 2021; 26:molecules26092563. [PMID: 33924816 PMCID: PMC8125739 DOI: 10.3390/molecules26092563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, chitooligosaccharides in different salt forms, such as chitooligosaccharide lactate, citrate, adipate, etc., were prepared by the microwave method. They were characterized by SEM, FTIR, NMR, etc., and the nitric oxide (NO) expression was determined in RAW 264.7 cells. The results showed that pure chitooligosaccharide was an irregular spherical shape with rough surface, and its different salt type products are amorphous solid with different honeycomb sizes. In addition to the characteristic absorption peaks of chitooligosaccharides, in FTIR, the characteristic absorption of carboxyl group, methylene group, and aromatic group in corresponding acid appeared. The characteristic absorption peaks of carbon in carboxyl group, hydrogen and carbon in methyl, methylene group, and aromatic group in corresponding acid also appeared in NMR. Therefore, the sugar ring structure and linking mode of chitooligosaccharides did not change after salt formation of chitooligosaccharides. Different salt chitooligosaccharides are completely different in promoting NO secretion by macrophages, and pure chitooligosaccharides are the best.
Collapse
Affiliation(s)
- Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
- Correspondence: ; Tel.: +86-532-82898780
| | - Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Yongliang Liu
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| |
Collapse
|
12
|
Zhang C, Li Y, Zhang T, Zhao H. Increasing chitosanase production in Bacillus cereus by a novel mutagenesis and screen method. Bioengineered 2021; 12:266-277. [PMID: 33356788 PMCID: PMC8806256 DOI: 10.1080/21655979.2020.1869438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Chitosan hydrolysis by chitosanase is one of the most effective methods to produce chitosan oligosaccharides. One of the prerequisites of enzyme fermentation production is to select and breed enzyme-producing cells with good performance. So in the process of fermentation production, the low yield of chitosanase cannot meet the current requirement. In this paper, a strain producing chitosanase was screened and identified, and a novel mutagenesis system (Atmospheric and Room Temperature Plasma (ARTP)) was selected to increase the yield of chitosanase. Then, the fermentation medium was optimized to further improve the enzyme activity of the strain. A strain of Bacillus cereus capable of producing chitosanase was screened and identified from soil samples. A mutant strain of B.cereus was obtained by Atmospheric and Room Temperature Plasma mutagenesis and bioscreening method, and chitosanase activity was 2.49 folds that of the original bacterium. After an optimized fermentation medium, the enzyme activity of the mutant strain was 1.47 folds that of the original bacterium. Combined with all the above optimization experiments, the enzyme activity of mutant strain increased by 3.66 times. The results showed that the Atmospheric and Room Temperature Plasma mutagenesis and bioscreening method could significantly increase the yield of chitosanase in B.cereus, and had little effect on the properties of the enzyme. These findings have potential applications in the mutagenesis of other enzyme-producing microorganisms.
Collapse
Affiliation(s)
- Chaozheng Zhang
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| | - Yi Li
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| | - Tianshuang Zhang
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| | - Hua Zhao
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| |
Collapse
|
13
|
Li M, Xie R, Liu J, Gan L, Long M. Preparation of chitooligosaccharide acetate salts with narrow molecular size distribution and the antioxidative activity. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Beer B, Bartolome MJ, Berndorfer L, Bochmann G, Guebitz GM, Nyanhongo GS. Controlled enzymatic hydrolysis and synthesis of lignin cross-linked chitosan functional hydrogels. Int J Biol Macromol 2020; 161:1440-1446. [DOI: 10.1016/j.ijbiomac.2020.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
|
15
|
Allison CL, Lutzke A, Reynolds MM. Identification of low molecular weight degradation products from chitin and chitosan by electrospray ionization time-of-flight mass spectrometry. Carbohydr Res 2020; 493:108046. [PMID: 32497941 DOI: 10.1016/j.carres.2020.108046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/10/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
The beneficial effects provided by chitosan oligosaccharides (COS) make them of interest in medical research. The monomers that constitute COS confer distinct properties, so controlling COS composition during their production is significant. In this work, we degraded chitin and chitosan polymers and identified low molecular weight products such as COS that formed, using electrospray ionization time-of-flight mass spectrometry. Our results show that hydrochloric acid, hydrogen peroxide, and nitrous acid generate distinct products from chitin and chitosan. Hydrochloric acid degrades chitin and chitosan to produce glucosamine (GlcN) monomers and oligomers. Hydrogen peroxide degrades chitosan to produce GlcN and N-acetyl-d-glucosamine (GlcNAc) monomers and oligomers, and nitrous acid degrades chitosan to produce 2,5-anhydro- d-mannose. Our studies show that COS composition is dictated by both the degradation protocol and the starting polymer. Additionally, our results enable selection of degradation protocols based on their ability to degrade chitin and chitosan and facilitate the production of COS with desired compositions.
Collapse
Affiliation(s)
- Christopher L Allison
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO, 80523, United States.
| | - Alec Lutzke
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, United States.
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO, 80523, United States; Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, United States; School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO, 80523, United States.
| |
Collapse
|
16
|
Effect of molecular weight of chitosan and its oligosaccharides on antitumor activities of chitosan-selenium nanoparticles. Carbohydr Polym 2019; 231:115689. [PMID: 31888818 DOI: 10.1016/j.carbpol.2019.115689] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
The antitumor activity of zero-valent selenium (Se0) nanoparticles stabilized by chitosan and its oligosaccharides having molecular weights 3 k, 65 k, and 600 k Da, was investigated. The nanoparticles stabilized with high molecular weight chitosan not only released selenium more easily compared with low molecular weight chitosan, but were also taken up by HepG2 cells more easily through electrostatic effect. Moreover, these were more efficient in inhibiting HepG2 cell viability. High ROS levels of cancer cells could easily induce selenium release from these nanoparticles, and oxidize the less toxic Se0 to highly toxic Se4+. The latter could not only consume antioxidant enzymes, but also cause mitochondrial dysfunction and cell apoptosis. Study of antitumor efficacy and side effect on a HepG2 xenograft BALB/c nude mice model exhibited that CS-Se0NPs had a higher selectivity for cancer cells; however, their effect on normal cells, which have relatively lower ROS levels, was limited.
Collapse
|