1
|
Cozzani M, Ferrari PF, Damonte G, Pellis A, Monticelli O. On the Development of Polylactic Acid/Polycaprolactone Blended Films with High Retention Capacity. Macromol Biosci 2024; 24:e2400272. [PMID: 39155238 DOI: 10.1002/mabi.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Indexed: 08/20/2024]
Abstract
The retention capacity of polymers is related to the development of systems that combine high surface-to-volume ratio with good handling and specific functionality. Biodegradability and biocompatibility are also key features for extending the field of applications to areas such as biomedicine. With this in mind, the aim of this work is to develop biodegradable, biocompatible, and highly functionalized porous films, that ensure suitable handling and a good surface-to-volume ratio. Polylactic acid (PLA) is applied as a polymer matrix to which a polycaprolactone with a star-shaped architecture (PCL-COOH) to ensure a high concentration of carboxylic end functionalities is added. The porous films are prepared using the phase inversion technique, which, as shown by Scanning Electron Microscopy (SEM) analysis, promotes good dispersion of the PCL-COOH domains. Absorption and release measurements performed with a positively charged model molecule show that the retention capacity and release rate can be tuned by changing the PCL-COOH concentration in the systems. Moreover, the adsorption properties for the formulation with the highest PCL-COOH content are also demonstrated with a real and widely used drug, namely doxorubicin. Finally, the bio- and hemocompatibility of the films, which are enzymatically degradable, are evaluated by using human keratinocytes and red blood cells, respectively.
Collapse
Affiliation(s)
- Martina Cozzani
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, Genoa, 16146, Italy
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, Genoa, 16145, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, Genoa, 16145, Italy
- IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, Genoa, 16132, Italy
| | - Giacomo Damonte
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, Genoa, 16146, Italy
| | - Alessandro Pellis
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, Genoa, 16146, Italy
| | - Orietta Monticelli
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, Genoa, 16146, Italy
| |
Collapse
|
2
|
Maitra J, Bhardwaj N. Development of bio-based polymeric blends - a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-35. [PMID: 39250518 DOI: 10.1080/09205063.2024.2394300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024]
Abstract
The current impetus to develop bio-based polymers for greater sustainability and lower carbon footprint is necessitated due to the alarming depletion of fossil resources, concurrent global warming, and related environmental issues. This article reviews the development of polymeric blends based on bio-based polymers. The focus on bio-based polymers is due to their greater 'Sustainability factor' as they are derived from renewable resources. The article delves into the synthesis of both conventional and highly biodegradable bio-based polymers, each crafted from feedstocks derived from nature's bounty. What sets this work apart is the exploration of blending existing bio-based polymers, culminating in the birth of entirely new materials. This review provides a comprehensive overview of the recent advancements in the development of bio-based polymeric blends, covering their synthesis, properties, applications, and potential contributions to a more sustainable future. Despite their potential benefits, bio-based materials face obstacles such as miscibility, processability issues and disparities in physical properties compared to conventional counterparts. The paper also discusses significance of compatibilizers, additives and future directions for the further advancement of these bio-based blends. While bio-based polymer blends hold promise for environmentally benign applications, many are still in the research phase. Ongoing research and technological innovations are driving the evolution of these blends as viable alternatives, but continued efforts are needed to ensure their successful integration into mainstream industrial practices. Concerted efforts from both researchers and industry stakeholders are essential to realize the full potential of bio-based polymers and accelerate their adoption on a global scale.
Collapse
Affiliation(s)
- Jaya Maitra
- Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nikita Bhardwaj
- Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhao T, Xiao P, Luo M, Nie S, Li F, Liu Y. Eco-Friendly Lithium Separators: A Frontier Exploration of Cellulose-Based Materials. Int J Mol Sci 2024; 25:6822. [PMID: 38999935 PMCID: PMC11241740 DOI: 10.3390/ijms25136822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Lithium-ion batteries, as an excellent energy storage solution, require continuous innovation in component design to enhance safety and performance. In this review, we delve into the field of eco-friendly lithium-ion battery separators, focusing on the potential of cellulose-based materials as sustainable alternatives to traditional polyolefin separators. Our analysis shows that cellulose materials, with their inherent degradability and renewability, can provide exceptional thermal stability, electrolyte absorption capability, and economic feasibility. We systematically classify and analyze the latest advancements in cellulose-based battery separators, highlighting the critical role of their superior hydrophilicity and mechanical strength in improving ion transport efficiency and reducing internal short circuits. The novelty of this review lies in the comprehensive evaluation of synthesis methods and cost-effectiveness of cellulose-based separators, addressing significant knowledge gaps in the existing literature. We explore production processes and their scalability in detail, and propose innovative modification strategies such as chemical functionalization and nanocomposite integration to significantly enhance separator performance metrics. Our forward-looking discussion predicts the development trajectory of cellulose-based separators, identifying key areas for future research to overcome current challenges and accelerate the commercialization of these green technologies. Looking ahead, cellulose-based separators not only have the potential to meet but also to exceed the benchmarks set by traditional materials, providing compelling solutions for the next generation of lithium-ion batteries.
Collapse
Affiliation(s)
- Tian Zhao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Pengcheng Xiao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Mingliang Luo
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Saiqun Nie
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Fuzhi Li
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuejun Liu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
4
|
Hu B, Zhang C, Zhu J, Yang J, Zheng Q, Zhang X, Cao J, Han L. Liquid-liquid biopolymers aqueous solution segregative phase separation in food: From fundamentals to applications-A review. Int J Biol Macromol 2024; 265:131044. [PMID: 38518933 DOI: 10.1016/j.ijbiomac.2024.131044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
As a result of the spontaneous movement of molecules, liquid-liquid biopolymer segregative phase separation takes place in an aqueous solution. The efficacy of this type of separation can be optimized under conditions where variables such as pH, temperature, and molecular concentrations have minimal impact on its dynamics. Recently, interest in the applications of biopolymers and their segregative phase separation-associated molecular stratification has increased, particularly in the food industry, where these methods permit the purification of specific particles and the embedding of microcapsules. The present review offers a comprehensive examination of the theoretical mechanisms that regulate the liquid-liquid biopolymers aqueous solution segregative phase separation, the factors that may exert an impact on this procedure, and the importance of this particular separation method in the context of food science. These discussion points also address existing difficulties and future possibilities related to the use of segregative phase separation in food applications. This highlights the potential for the design of novel functional foods and the enhancement of food properties.
Collapse
Affiliation(s)
- Bing Hu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China.
| | - Cunzhi Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Junzhe Zhu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Jixin Yang
- Faculty of Social and Life Sciences, Wrexham University, Mold Road, Wrexham LL11 2AW, United Kingdom
| | - Qiuyue Zheng
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Xiaobo Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Jijuan Cao
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China.
| |
Collapse
|
5
|
Wang Z, Wang C, Gao Y, Li Z, Shang Y, Li H. Porous Thermal Insulation Polyurethane Foam Materials. Polymers (Basel) 2023; 15:3818. [PMID: 37765672 PMCID: PMC10537539 DOI: 10.3390/polym15183818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Porous thermal insulation materials (PTIMs) are a class of materials characterized by low thermal conductivity, low bulk density and high porosity. The low thermal conductivity of the gas enclosed in their pores allows them to achieve efficient thermal insulation, and are they among the most widely used and effective materials in thermal insulation material systems. Among the PTIMs, polyurethane foam (PUF) stands out as particularly promising. Its appeal comes from its multiple beneficial features, such as low density, low thermal conductivity and superior mechanical properties. Such attributes have propelled its broad application across domains encompassing construction, heterogeneous chemical equipment, water conservation and hydropower, and the aviation and aerospace fields. First, this article outlines the structure and properties of porous thermal insulation PUF materials. Next, it explores the methods of preparing porous thermal insulation PUF materials, evaluating the associated advantages and disadvantages of each technique. Following this, the mechanical properties, thermal conductivity, thermal stability, and flame-retardant characteristics of porous thermal insulation PUF materials are characterized. Lastly, the article provides insight into the prospective development trends pertaining to porous thermal insulation PUF materials.
Collapse
Affiliation(s)
- Zhiguo Wang
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China; (Z.W.); (C.W.); (Y.S.)
| | - Chengzhu Wang
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China; (Z.W.); (C.W.); (Y.S.)
| | - Yuebin Gao
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
| | - Zhao Li
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China; (Z.W.); (C.W.); (Y.S.)
| | - Yu Shang
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China; (Z.W.); (C.W.); (Y.S.)
| | - Haifu Li
- Shaanxi Haichuang Industrial Co., Ltd., Xi’an 712034, China;
| |
Collapse
|
6
|
Naseri M, Hedayatnazari A, Tayebi L. PGS/Gelatin Nanocomposite Electrospun Wound Dressing. JOURNAL OF COMPOSITES SCIENCE 2023; 7:237. [PMID: 38646461 PMCID: PMC11031268 DOI: 10.3390/jcs7060237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Infectious diabetic wounds can result in severe injuries or even death. Biocompatible wound dressings offer one of the best ways to treat these wounds, but creating a dressing with a suitable hydrophilicity and biodegradation rate can be challenging. To address this issue, we used the electrospinning method to create a wound dressing composed of poly(glycerol sebacate) (PGS) and gelatin (Gel). We dissolved the PGS and Gel in acetic acid (75 v/v%) and added EDC/NHS solution as a crosslinking agent. Our measurements revealed that the scaffolds' fiber diameter ranged from 180.2 to 370.6 nm, and all the scaffolds had porosity percentages above 70%, making them suitable for wound healing applications. Additionally, we observed a significant decrease (p < 0.05) in the contact angle from 110.8° ± 4.3° for PGS to 54.9° ± 2.1° for PGS/Gel scaffolds, indicating an improvement in hydrophilicity of the blend scaffold. Furthermore, our cell viability evaluations demonstrated a significant increase (p < 0.05) in cultured cell growth and proliferation on the scaffolds during the culture time. Our findings suggest that the PGS/Gel scaffold has potential for wound healing applications.
Collapse
Affiliation(s)
- Mahyar Naseri
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| | - Aysan Hedayatnazari
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI 53233, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
7
|
Qian K, Zhou J, Miao M, Wu H, Thaiboonrod S, Fang J, Feng X. Highly Ordered Thermoplastic Polyurethane/Aramid Nanofiber Conductive Foams Modulated by Kevlar Polyanion for Piezoresistive Sensing and Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:88. [PMID: 37029266 PMCID: PMC10082146 DOI: 10.1007/s40820-023-01062-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference (EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane (TPU) foams reinforced by aramid nanofibers (ANF) with adjustable pore-size distribution were successfully obtained via a non-solvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles (Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti3C2Tx MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti3C2Tx MXene (PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0-344.5 kPa (50% strain) with good sensitivity at 0.46 kPa-1. Meanwhile, the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human-machine interfaces.
Collapse
Affiliation(s)
- Kunpeng Qian
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jianyu Zhou
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Miao Miao
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongmin Wu
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Sineenat Thaiboonrod
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jianhui Fang
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xin Feng
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
8
|
Naziri Mehrabani SA, Keskin B, Arefi-Oskoui S, Koyuncu I, Vatanpour V, Orooji Y, Khataee A. Ti2AlN MAX phase as a modifier of cellulose acetate membrane for improving antifouling and permeability properties. Carbohydr Polym 2022; 298:120114. [DOI: 10.1016/j.carbpol.2022.120114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
|
9
|
Wu Y, Zhang S, Han S, Yu K, Wang L. Regulating cell morphology of poly (lactic acid) foams from microcellular to nanocellular by crystal nucleating agent. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Liu W, Huang N, Yang J, Peng L, Li J, Chen W. Characterization and application of porous polylactic acid films prepared by nonsolvent-induced phase separation method. Food Chem 2022; 373:131525. [PMID: 34774380 DOI: 10.1016/j.foodchem.2021.131525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023]
Abstract
Nonsolvent-induced phase separation (NIPS) method was employed to prepare polylactic acid (PLA) films using N-methyl-2-pyrrolidone (NMP) as a nonsolvent. The morphology and structure of PLA films were characterized, and the application of the films in pork preservation was investigated. When 10 wt% NMP was added, film with uniform porous structures was obtained. The crystalline and Fourier-transform infrared spectra analyses indicated that the addition of NMP during the preparation of PLA films caused their crystalline properties to change, but had no effect on their composition. However, the 10 wt% NMP/PLA film had improved thermal stability, water vapor transmission and oxygen permeability. The results on the changes in pH, total volatile basic nitrogen content and total viable counts of pork during refrigerated storage indicated that the 10 wt% NMP/PLA film could more effectively extend the shelf life of pork than polyethylene film. This work demonstrates the potential of the porous PLA film in pork packaging.
Collapse
Affiliation(s)
- Wenlong Liu
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China
| | - Nanlan Huang
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China
| | - Junjie Yang
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Jing Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Weijun Chen
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
11
|
Milovanovic S, Pajnik J, Lukic I. Tailoring of advanced poly(lactic acid)‐based materials: A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.51839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Stoja Milovanovic
- University of Belgrade Faculty of Technology and Metallurgy Belgrade Serbia
- New Chemical Syntheses Institute Łukasiewicz Research Network Puławy Poland
| | - Jelena Pajnik
- University of Belgrade Innovation Center of the Faculty of Technology and Metallurgy Belgrade Serbia
| | - Ivana Lukic
- University of Belgrade Faculty of Technology and Metallurgy Belgrade Serbia
| |
Collapse
|
12
|
Pooresmaeil M, Namazi H. Folic acid-modified photoluminescent dialdehyde carboxymethyl cellulose crosslinked bionanogels for pH-controlled and tumor-targeted co-drug delivery. Int J Biol Macromol 2022; 200:247-262. [PMID: 35007630 DOI: 10.1016/j.ijbiomac.2022.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 01/21/2023]
Abstract
This work aimed to fabricate a new photoluminescent bionanogel with both targeted anticancer drug delivery and bioimaging potentials. Briefly, at first photoluminescent carbon dots (CDs) were synthesized from the low-cost and more available black pepper with traditional medicinal properties. The as-synthesized dialdehyde carboxymethyl cellulose (DCMC) was used as a safe crosslinker for gelatin crosslinking in the presence of CDs (CDs/DCMC-Gel). Eventually, the residual amine functional groups of gelatin were used for the conjugation of CDs/DCMC-Gel with folic acid (FA) ((CDs/DCMC-Gel)-FA bionanogels). All employed physicochemical characterization methods approved the (CDs/DCMC-Gel)-FA bionanogels fabrication route. SEM analysis specified the spherical morphology with a diameter of ~70-90 nm for it. Curcumin (CUR) and doxorubicin (DOX) respectively were loaded with drug entrapment efficiency of about 44.0% and 41.4%. The release rate for both drugs in acidic conditions was higher than in physiological conditions. In vitro antitumor experiments; MTT, DAPI staining, cellular uptake, and cell cycle tests showed the superior anticancer effect of the CUR@DOX@(CDs/DCMC-Gel)-FA in comparison with free CUR@DOX. Moreover, the (CDs/DCMC-Gel)-FA acted as a hopeful bio-imaging tool. Taken together, the designed (CDs/DCMC-Gel)-FA could be proposed as a promising nanosystem for efficient chemotherapy.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
13
|
Rosli NA, Karamanlioglu M, Kargarzadeh H, Ahmad I. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review. Int J Biol Macromol 2021; 187:732-741. [PMID: 34358596 DOI: 10.1016/j.ijbiomac.2021.07.196] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
Poly(lactic acid) (PLA), a bio-based polyester, has been extensively investigated in the recent past owing to its excellent mechanical properties. Several studies have been conducted on PLA blends, with a focus on improving the brittleness of PLA to ensure its suitability for various applications. However, the increasing use of PLA has increased the contamination of PLA-based products in the environment because PLA remains intact even after three years at sea or in soil. This review focuses on analyzing studies that have worked on improving the degradation properties of PLA blends and studies how other additives affect degradation by considering different degradation media. Factors affecting the degradation properties, such as surface morphology, water uptake, and crystallinity of PLA blends, are highlighted. In natural, biotic, and abiotic media, water uptake plays a crucial role in determining biodegradation rates. Immiscible blends of PLA with other polymer matrices cause phase separation, increasing the water absorption. The susceptibility of PLA to hydrolytic and enzymatic degradation is high in the amorphous region because it can be easily penetrated by water. It is essential to study the morphology, water absorption, and structural properties of PLA blends to predict the biodegradation properties of PLA in the blends.
Collapse
Affiliation(s)
- Noor Afizah Rosli
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mehlika Karamanlioglu
- Biomedical Engineering Department, Faculty of Engineering and Architecture, Istanbul Gelisim University, 34310, Istanbul, Turkey
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Ishak Ahmad
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
14
|
Sang G, Xu P, Yan T, Murugadoss V, Naik N, Ding Y, Guo Z. Interface Engineered Microcellular Magnetic Conductive Polyurethane Nanocomposite Foams for Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2021; 13:153. [PMID: 34236560 PMCID: PMC8266988 DOI: 10.1007/s40820-021-00677-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 05/27/2023]
Abstract
Lightweight microcellular polyurethane (TPU)/carbon nanotubes (CNTs)/ nickel-coated CNTs (Ni@CNTs)/polymerizable ionic liquid copolymer (PIL) composite foams are prepared by non-solvent induced phase separation (NIPS). CNTs and Ni@CNTs modified by PIL provide more heterogeneous nucleation sites and inhibit the aggregation and combination of microcellular structure. Compared with TPU/CNTs, the TPU/CNTs/PIL and TPU/CNTs/Ni@CNTs/PIL composite foams with smaller microcellular structures have a high electromagnetic interference shielding effectiveness (EMI SE). The evaporate time regulates the microcellular structure, improves the conductive network of composite foams and reduces the microcellular size, which strengthens the multiple reflections of electromagnetic wave. The TPU/10CNTs/10Ni@CNTs/PIL foam exhibits slightly higher SE values (69.9 dB) compared with TPU/20CNTs/PIL foam (53.3 dB). The highest specific EMI SE of TPU/20CNTs/PIL and TPU/10CNTs/10Ni@CNTs/PIL reaches up to 187.2 and 211.5 dB/(g cm-3), respectively. The polarization losses caused by interfacial polarization between TPU substrates and conductive fillers, conduction loss caused by conductive network of fillers and magnetic loss caused by Ni@CNT synergistically attenuate the microwave energy.
Collapse
Affiliation(s)
- Guolong Sang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Pei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Tong Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Vignesh Murugadoss
- Advanced Materials Division, Engineered Multifunctional Composites (EMC) Nanotech. LLC, Knoxville, TN, 37934, USA
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Nithesh Naik
- Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yunsheng Ding
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
15
|
Yang B, Yu Y, Pan Y, Wang S, Xu X, Wang Y, Qian J, Xia R, Zhang P, Shi Y, Tu Y. In situ investigation of formation kinetics of microporous structure in PVDF thin films prepared via thermally‐induced phase separation (TIPS): Effects of film thickness and polymer concentration. NANO SELECT 2021. [DOI: 10.1002/nano.202000304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Bin Yang
- College of Chemistry & Chemical Engineering Key Laboratory of Environment‐Friendly Polymeric Materials of Anhui Province Institute of High Performance Rubber Materials & Products Anhui University Hefei Anhui China
| | - Yang‐nan Yu
- College of Chemistry & Chemical Engineering Key Laboratory of Environment‐Friendly Polymeric Materials of Anhui Province Institute of High Performance Rubber Materials & Products Anhui University Hefei Anhui China
| | - Yang Pan
- College of Chemistry & Chemical Engineering Key Laboratory of Environment‐Friendly Polymeric Materials of Anhui Province Institute of High Performance Rubber Materials & Products Anhui University Hefei Anhui China
| | - Shu‐qing Wang
- College of Chemistry & Chemical Engineering Key Laboratory of Environment‐Friendly Polymeric Materials of Anhui Province Institute of High Performance Rubber Materials & Products Anhui University Hefei Anhui China
| | - Xiang Xu
- College of Chemistry & Chemical Engineering Key Laboratory of Environment‐Friendly Polymeric Materials of Anhui Province Institute of High Performance Rubber Materials & Products Anhui University Hefei Anhui China
| | - Ying‐ying Wang
- College of Chemistry & Chemical Engineering Key Laboratory of Environment‐Friendly Polymeric Materials of Anhui Province Institute of High Performance Rubber Materials & Products Anhui University Hefei Anhui China
| | - Jia‐sheng Qian
- College of Chemistry & Chemical Engineering Key Laboratory of Environment‐Friendly Polymeric Materials of Anhui Province Institute of High Performance Rubber Materials & Products Anhui University Hefei Anhui China
| | - Ru Xia
- College of Chemistry & Chemical Engineering Key Laboratory of Environment‐Friendly Polymeric Materials of Anhui Province Institute of High Performance Rubber Materials & Products Anhui University Hefei Anhui China
| | - Peng Zhang
- College of Chemistry & Chemical Engineering Key Laboratory of Environment‐Friendly Polymeric Materials of Anhui Province Institute of High Performance Rubber Materials & Products Anhui University Hefei Anhui China
| | - You Shi
- College of Polymer Science & Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu Sichuan China
| | - You‐lei Tu
- College of Polymer Science & Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu Sichuan China
| |
Collapse
|