1
|
Almalla A, Elomaa L, Fribiczer N, Landes T, Tang P, Mahfouz Z, Koksch B, Hillebrandt KH, Sauer IM, Heinemann D, Seiffert S, Weinhart M. Chemistry matters: A side-by-side comparison of two chemically distinct methacryloylated dECM bioresins for vat photopolymerization. BIOMATERIALS ADVANCES 2024; 160:213850. [PMID: 38626580 DOI: 10.1016/j.bioadv.2024.213850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Decellularized extracellular matrix (dECM) is an excellent natural source for 3D bioprinting materials due to its inherent cell compatibility. In vat photopolymerization, the use of dECM-based bioresins is just emerging, and extensive research is needed to fully exploit their potential. In this study, two distinct methacryloyl-functionalized, photocrosslinkable dECM-based bioresins were prepared from digested porcine liver dECM through functionalization with glycidyl methacrylate (GMA) or conventional methacrylic anhydride (MA) under mild conditions for systematic comparison. Although the chemical modifications did not significantly affect the structural integrity of the dECM proteins, mammalian cells encapsulated in the respective hydrogels performed differently in long-term culture. In either case, photocrosslinking during 3D (bio)printing resulted in transparent, highly swollen, and soft hydrogels with good shape fidelity, excellent biomimetic properties and tunable mechanical properties (~ 0.2-2.5 kPa). Interestingly, at a similar degree of functionalization (DOF ~ 81.5-83.5 %), the dECM-GMA resin showed faster photocrosslinking kinetics in photorheology resulting in lower final stiffness and faster enzymatic biodegradation compared to the dECM-MA gels, yet comparable network homogeneity as assessed via Brillouin imaging. While human hepatic HepaRG cells exhibited comparable cell viability directly after 3D bioprinting within both materials, cell proliferation and spreading were clearly enhanced in the softer dECM-GMA hydrogels at a comparable degree of crosslinking. These differences were attributed to the additional hydrophilicity introduced to dECM via methacryloylation through GMA compared to MA. Due to its excellent printability and cytocompatibility, the functional porcine liver dECM-GMA biomaterial enables the advanced biofabrication of soft 3D tissue analogs using vat photopolymerization-based bioprinting.
Collapse
Affiliation(s)
- Ahed Almalla
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Nora Fribiczer
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Timm Landes
- HOT - Hanover Centre for Optical Technologies, Leibniz Universität Hannover, Nienburger Straße 17, 30167 Hannover, Germany; Institute of Horticultural Productions Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1a, 30167 Hannover, Germany
| | - Peng Tang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Zeinab Mahfouz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Karl Herbert Hillebrandt
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany
| | - Igor Maximilian Sauer
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany
| | - Dag Heinemann
- HOT - Hanover Centre for Optical Technologies, Leibniz Universität Hannover, Nienburger Straße 17, 30167 Hannover, Germany; Institute of Horticultural Productions Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1a, 30167 Hannover, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany; Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Xu L, Wu C, Lay Yap P, Losic D, Zhu J, Yang Y, Qiao S, Ma L, Zhang Y, Wang H. Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chem 2024; 438:137964. [PMID: 37976879 DOI: 10.1016/j.foodchem.2023.137964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silk fibroin materials are emergingly explored for food applications due to their inherent properties including safe oral consumption, biocompatibility, gelatinization, antioxidant performance, and mechanical properties. However, silk fibroin possesses drawbacks like brittleness owing to its inherent specific composition and structure, which limit their applications in this field. This review discusses current progress about molecular modification methods on silk fibroin such as extraction, blending, self-assembly, enzymatic catalysis, etc., to address these limitations and improve their physical/chemical properties. It also summarizes matrix enhancement strategies including freeze drying, spray drying, electrospinning/electrospraying, microfluidic spinning/wheel spinning, desolvation and supercritical fluid, to generate nano-, submicron-, micron-, or bulk-scale materials. It finally highlights the food applications of silk fibroin materials, including nutraceutical improvement, emulsions, enzyme immobilization and 3D/4D printing. This review also provides insights on potential opportunities (like safe modification, toxicity risk evaluation, and digestion conditions) and possibilities (like digital additive manufacturing) in functional food industry.
Collapse
Affiliation(s)
- Liang Xu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China
| | - Chaoyang Wu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Pei Lay Yap
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Jeencham R, Sinna J, Ruksakulpiwat C, Tawonsawatruk T, Numpaisal PO, Ruksakulpiwat Y. Development of Biphasic Injectable Hydrogels for Meniscus Scaffold from Photocrosslinked Glycidyl Methacrylate-Modified Poly(Vinyl Alcohol)/Glycidyl Methacrylate-Modified Silk Fibroin. Polymers (Basel) 2024; 16:1093. [PMID: 38675012 PMCID: PMC11055166 DOI: 10.3390/polym16081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The development of a hydrogel material with a modified chemical structure of poly(vinyl alcohol) (PVA) and silk fibroin (SF) using glycidyl methacrylate (GMA) (denoted as PVA-g-GMA and SF-g-GMA) is an innovative approach in the field of biomaterials and meniscus tissue engineering in this study. The PVA-g-GMA/SF-g-GMA hydrogel was fabricated using different ratios of PVA-g-GMA to SF-g-GMA: 100/0, 75/25, 50/50, 25/75, and 0/100 (w/w of dry substances), using lithium phenyl (2,4,6-trimethylbenzoyl)phosphinate (LAP) as a free radical photoinitiator, for 10 min at a low ultraviolet (UV) intensity (365 nm, 6 mW/cm2). The mechanical properties, morphology, pore size, and biodegradability of the PVA-g-GMA/SF-g-GMA hydrogel were investigated. Finally, for clinical application, human chondrocyte cell lines (HCPCs) were mixed into PVA-g-GMA/SF-g-GMA solutions and fabricated into hydrogel to study the viability of live and dead cells and gene expression. The results indicate that as the SF-g-GMA content increased, the compressive modulus of the PVA-g-GMA/SF-g-GMA hydrogel dropped from approximately 173 to 11 kPa. The degradation rates of PVA-g-GMA/SF-g-GMA 100/0, 75/25, and 50/50 reached up to 15.61%, 17.23%, and 18.93% in 4 months, respectively. In all PVA-g-GMA/SF-g-GMA conditions on day 7, chondrocyte cell vitality exceeded 80%. The PVA-g-GMA/SF-g-GMA 75:25 and 50:50 hydrogels hold promise as a biomimetic biphasic injectable hydrogel for encapsulated augmentation, offering advantages in terms of rapid photocurability, tunable mechanical properties, favorable biological responses, and controlled degradation.
Collapse
Affiliation(s)
- Rachasit Jeencham
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand; (R.J.); (J.S.); (C.R.)
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jiraporn Sinna
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand; (R.J.); (J.S.); (C.R.)
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand; (R.J.); (J.S.); (C.R.)
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Piya-on Numpaisal
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand; (R.J.); (J.S.); (C.R.)
- School of Orthopaedics, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand; (R.J.); (J.S.); (C.R.)
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
4
|
Spessot E, Passuello S, Shah LV, Maniglio D, Motta A. Nanocomposite Methacrylated Silk Fibroin-Based Scaffolds for Bone Tissue Engineering. Biomimetics (Basel) 2024; 9:218. [PMID: 38667229 PMCID: PMC11048339 DOI: 10.3390/biomimetics9040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The treatment of bone defects is a clinical challenge. Bone tissue engineering is gaining interest as an alternative to current treatments, with the development of 3D porous structures (scaffolds) helpful in promoting bone regeneration by ensuring temporary functional support. In this work, methacrylated silk fibroin (SilMA) sponges were investigated as scaffolds for bone tissue engineering by exploiting the combination of physical (induced by NaCl salt during particulate leaching) and chemical crosslinking (induced by UV-light exposure) techniques. A biomimetic approach was adopted to better simulate the extracellular matrix of the bone by introducing either natural (mussel shell-derived) or synthetic-origin hydroxyapatite nanoparticles into the SilMA sponges. The obtained materials were characterized in terms of pore size, water absorption capability and mechanical properties to understand both the effect of the inclusion of the two different types of nanoparticles and the effect of the photocrosslinking. Moreover, the SilMA sponges were tested for their bioactivity and suitability for bone tissue engineering purposes by using osteosarcoma cells, studying their metabolism by an AlamarBlue assay and their morphology by scanning electron microscopy. Results indicate that photocrosslinking helps in obtaining more regular structures with bimodal pore size distributions and in enhancing the stability of the constructs in water. Moreover, the addition of naturally derived hydroxyapatite was observed to be more effective at activating osteosarcoma cell metabolism than synthetic hydroxyapatite, showing a statistically significant difference in the AlamarBlue measurement on day 7 after seeding. The methacrylated silk fibroin/hydroxyapatite nanocomposite sponges developed in this work were found to be promising tools for targeting bone regeneration with a sustainable approach.
Collapse
Affiliation(s)
- Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Serena Passuello
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
| | - Lekha Vinod Shah
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Devid Maniglio
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| |
Collapse
|
5
|
Mohsen M, Abdel Gaber SA, Shoueir KR, El-Kemary M, Abo El-Yazeed WS. Synthesis of Cross-Linked and Sterilized Water-Soluble Electrospun Nanofiber Biomatrix of Streptomycin-Imbedded PVA/CHN/β-CD for Wound Healing. ACS OMEGA 2024; 9:10058-10068. [PMID: 38463317 PMCID: PMC10918800 DOI: 10.1021/acsomega.3c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
The diagnosis and prognosis of chronic wounds are demanding and require objective assessment. Because of their potential medicinal applications, the syntheses of biopolymeric chitosan (CHN) structure and PVA-based mixed electrospun nanofibers with biomimetic features were thoroughly investigated. This study created different formulas, including a guest molecule and capping agent, using supporting PVA as a vehicle. CHN was used as a biomodifier, and beta-cyclodextrin (ß-CD) as a smoother and more efficiently entraps streptomycin (STP) compared with the silver sheet wound dressing. The relevant analyses showed that the size distribution increased with the incorporation of PVA, CHN, and ß-CD to 120.3, 161.9, and 192.02 nm. The webs boosted particle size and released content stability to 96.4% without compromising the nanofiber structure. Examining the synergistic effects of the PVA/CHN/STP/ß-CD nanoformulation against pathogenic strains of S. aureus, P. aeruginosa, and Aspergillus niger, clean zones were 47 ± 3.4, 45 ± 3.0, and 49 ± 3.7 mm were produced. PVA/CHN/STP/ß-CD formula exhibited a 98.9 ± 0.6% cell viability and wound closure of 100% at 72 h. The results reveal that the PVA/CHN/STP/ß-CD formula is promising for medical applications, especially in wound healing, compared with the silver sheet.
Collapse
Affiliation(s)
- Mohamed Mohsen
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
- Institut de Chimie et Procédés Pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Wafaa S Abo El-Yazeed
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura ,Egypt
| |
Collapse
|
6
|
He X, Wang R, Zhou F, Liu H. Recent advances in photo-crosslinkable methacrylated silk (Sil-MA)-based scaffolds for regenerative medicine: A review. Int J Biol Macromol 2024; 256:128031. [PMID: 37972833 DOI: 10.1016/j.ijbiomac.2023.128031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silks fibroin can be chemically modified through amino acid side chains to obtain methacrylated silk (Sil-MA). Sil-MA could be processed into a variety of scaffold forms and combine synergistically with other biomaterials to form composites vehicle. The advent of Sil-MA material has enabled impressive progress in the development of various scaffolds based on Sil-MA type to imitate the structural and functional characteristics of natural tissues. This review highlights the reasonable design and bio-fabrication strategies of diverse Sil-MA-based tissue constructs for regenerative medicine. First, we elucidate modification methodology and characteristics of Sil-MA. Next, we describe characteristics of Sil-MA hydrogels, and focus on the design approaches and formation of different types of Sil-MA-based hydrogels. Thereafter, we present an overview of the recent advances in the application of Sil-MA based scaffolds for regenerative medicine, including detailed strategies for the engineering methods and materials used. Finally, we summarize the current research progress and future directions of Sil-MA in regenerative medicine. This review not only delineates the representative design strategies and their application in regenerative medicine, but also provides new direction in the fabrication of biomaterial constructs for the clinical translation in order to stimulate the future development of implants.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China
| | - RuiDeng Wang
- Peking University Third Hospital, Department of Orthopaedics, PR China; Peking University Third Hospital, Engineering Research Center of Bone and Joint Precision Medicine, PR China
| | - Fang Zhou
- Peking University Third Hospital, Department of Orthopaedics, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China.
| |
Collapse
|
7
|
Wang JY, Chen LJ, Zhao X, Yan XP. Silk fibroin-based colorimetric microneedle patch for rapid detection of spoilage in packaged salmon samples. Food Chem 2023; 406:135039. [PMID: 36446279 DOI: 10.1016/j.foodchem.2022.135039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Spoiled salmon can cause foodborne diseases and severely affects human health. Herein, we report a pH-responsive colorimetric microneedle (MN) patch fabricated from bromothymol blue (BTB) and silk fibroin meth acryloyl (SilMA) (BTB/SilMA@MN patch) for sensing salmon spoilage. The needle tips of MN could penetrate food cling film and insert into fish to extract tissue fluids directly and transport the extracted fluids to the backing layer for color displaying. The color change of BTB/SilMA@MN patches depended on the pH variation resulting from the increase of total volatile basic nitrogen in salmon during storage. The color of MN patches changed from yellow to yellowish green and to final green, indicating salmon changed from fresh to medium fresh and then to putrefied, respectively. Salmon spoilage can be rapidly determined via naked eye recognition and also analyzed on a smartphone in a nondestructive way, allowing consumers to estimate food quality easily and reliably.
Collapse
Affiliation(s)
- Jiang-Yue Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Shi X, Wang X, Shen W, Yue W. Biocompatibility of silk methacrylate/gelatin-methacryloyl composite hydrogel and its feasibility as a vascular tissue engineering scaffold. Biochem Biophys Res Commun 2023; 650:62-72. [PMID: 36773341 DOI: 10.1016/j.bbrc.2023.01.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Silk methacrylate (SilMA) has been studied extensively due to its ability to modify Silk fibroin (SF) by increasing the water solubility and enhancing the mechanical properties of SF hydrogels. However, SilMA hydrogels are generally soft with weak mechanical properties. In order to enhance the mechanical properties of hydrogel scaffolds, we used liquid nitrogen to modify SilMA to obtain a novel N2-SilMA/gelatin-methacryloyl (GelMA) composite hydrogel. N2-SilMA was successfully detected by Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance. Scanning electron microscope showed that the composite hydrogel still had certain arrangement characteristics of SF and dense pores which met the necessary conditions for the cell scaffold. The mechanical tests showed that the mechanical properties of SilMA were greatly enhanced after modification at ultra-low temperature. We evaluated its cytocompatibility and biocompatibility, and the results showed that the composite scaffold promoted the growth of cells. Different types of composite hydrogels were injected into ICR mice and the results showed a stable scaffold structure in vivo, suggesting their ability to promote angiogenesis. In conclusion, the N2-SilMA/GelMA composite hydrogel had better mechanical properties, excellent cytocompatibility, and biological properties compared to the other groups.
Collapse
Affiliation(s)
- Xinyu Shi
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiaoyu Wang
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wei Shen
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wanfu Yue
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China.
| |
Collapse
|
9
|
Silk Fibroin/Tannin/ZnO Nanocomposite Hydrogel with Hemostatic Activities. Gels 2022; 8:gels8100650. [PMID: 36286151 PMCID: PMC9601499 DOI: 10.3390/gels8100650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
The inevitable bleeding and infections caused by disasters and accidents are the main causes of death owing to extrinsic trauma. Hemostatic agents are often used to quickly suppress bleeding and infection, and they can solve this problem in a short time. Silk fibroin (SF) has poor processibility in water, owing to incomplete solubility therein. In this study, aiming to overcome this disadvantage, a modified silk fibroin (SF-BGE), easily soluble in water, was prepared by introducing butyl glycidyl ether (BGE) into its side chain. Subsequently, a small amount of tannic acid (TA) was introduced to prepare an SF-BGE /TA solution, and ZnO nanoparticles (NPs) were added to the solution to form the coordination bonds between the ZnO and TA, leading to an SF-based nanocomposite hydrogel. A structural characterization of the SF-BGE, SF-BGE/TA, SF-BGE/TA/ZnO, and the coordination bonds between ZnO/TA was observed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the phase change was observed by rheological measurements. The pore formation of the SF-BGE/TA/ZnO hydrogel and dispersibility of ZnO were verified through energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The cytocompatible and hemostatic performances of the SF-BGE/TA/ZnO NPs composite hydrogels were evaluated, and the hydrogels showed superior hemostatic and cytocompatible activities. Therefore, the SF-based nanocomposite hydrogel is considered as a promising material for hemostasis.
Collapse
|
10
|
Photocrosslinkable Silk-Based Biomaterials for Regenerative Medicine and Healthcare Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
ZnO nanoparticle-embedded modified silk fibroin-tannin multifunctional hydrogel. Int J Biol Macromol 2022; 210:1-10. [DOI: 10.1016/j.ijbiomac.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/20/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022]
|
12
|
Badali E, Hosseini M, Varaa N, Mahmoodi N, Goodarzi A, Taghdiri Nooshabadi V, Hassanzadeh S, Arabpour Z, Khanmohammadi M. Production of uniform size cell-enclosing silk derivative vehicles through coaxial microfluidic device and horseradish crosslinking reaction. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Fu Z, Li W, Wei J, Yao K, Wang Y, Yang P, Li G, Yang Y, Zhang L. Construction and Biocompatibility Evaluation of Fibroin/Sericin-Based Scaffolds. ACS Biomater Sci Eng 2022; 8:1494-1505. [PMID: 35230824 DOI: 10.1021/acsbiomaterials.1c01426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because tissue responses to implants determine the success or failure of tissue engineering products, fibroin/sericin-based scaffolds including bionic silk scaffolds, native silk fibers, fibroin fibers, and regenerated fibroin have been fabricated, and their biocompatibility was investigated. Fibroin/sericin-based scaffolds were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Bionic silk scaffolds were beneficial to silk fiber formation through self-assembly. Histological and immunofluorescent staining analysis demonstrated that bionic silk scaffolds did not show significant inflammatory responses. Immunization analysis showed that soluble fibroin and sericin did not show obvious immunogenicity. This work supplied an effective approach to design fibroin/sericin-based scaffolds for tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Zexi Fu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Wenhui Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Jingjing Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Ke Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Yuqing Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| |
Collapse
|
14
|
Fabrication of Tri-polymers Composite Film with High Cyclic Stability and Rapid Degradation for Cardiac Tissue Engineering. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Heseltine PL, Bayram C, Gultekinoglu M, Homer-Vanniasinkam S, Ulubayram K, Edirisinghe M. Facile One-Pot Method for All Aqueous Green Formation of Biocompatible Silk Fibroin-Poly(Ethylene Oxide) Fibers for Use in Tissue Engineering. ACS Biomater Sci Eng 2022; 8:1290-1300. [PMID: 35232011 PMCID: PMC9096800 DOI: 10.1021/acsbiomaterials.1c01555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk fibroin (SF) fibers are highly regarded in tissue engineering because of their outstanding biocompatibility and tunable properties. A challenge remains in overcoming the trade-off between functioning and biocompatible fibers and the use of cytotoxic, environmentally harmful organic solvents in their processing and formation. The aim of this research was to produce biocompatible SF fibers without the use of cytotoxic solvents, via pressurized gyration (PG). Aqueous SF was blended with poly(ethylene oxide) (PEO) in ratios of 80:20 (labeled SF-PEO 80:20) and 90:10 (labeled SF-PEO 90:10) and spun into fibers using PG, assisted by a range of applied pressures and heat. Pure PEO (labeled PEO-Aq) and SF solubilized in hexafluoro-isopropanol (HFIP) (labeled SF-HFIP) and aqueous SF (labeled SF-Aq) were also prepared for comparison. The resulting fibers were characterized using SEM, TGA, and FTIR. Their in vitro cell behavior was analyzed using a Live/Dead assay and cell proliferation studies with the SaOS-2 human bone osteosarcoma cell line (ATCC, HTB-85) and human fetal osteoblast cells (hFob) (ATCC, CRL-11372) in 2D culture conditions. Fibers in the micrometer range were successfully produced using SF-PEO blends, SF-HFIP, and PEO-Aq. The fiber thickness ranged from 0.71 ± 0.17 μm for fibers produced using SF-PEO 90:10 with no applied pressure to 2.10 ± 0.78 μm for fibers produced using SF-PEO 80:10 with 0.3 MPa applied pressure. FTIR confirmed the presence of SF via amide I and amide II bands in the blend fibers because of a change in structural conformation. No difference was observed in thermogravimetric properties among varying pressures and no significant difference in fiber diameters for pressures. SaOS-2 cells and hFOb cell studies demonstrated higher cell densities and greater live cells on SF-PEO blends when compared to SF-HFIP. This research demonstrates a scalable and green method of producing SF-based constructs for use in bone-tissue engineering applications.
Collapse
Affiliation(s)
- Phoebe Louiseanne Heseltine
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Cem Bayram
- Institute of Science and Technology, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara 06800, Turkey
| | - Merve Gultekinoglu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara 06800, Turkey
| | | | - Kezban Ulubayram
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara 06800, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
16
|
Lujerdean C, Baci GM, Cucu AA, Dezmirean DS. The Contribution of Silk Fibroin in Biomedical Engineering. INSECTS 2022; 13:286. [PMID: 35323584 PMCID: PMC8950689 DOI: 10.3390/insects13030286] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
Silk fibroin (SF) is a natural protein (biopolymer) extracted from the cocoons of Bombyx mori L. (silkworm). It has many properties of interest in the field of biotechnology, the most important being biodegradability, biocompatibility and robust mechanical strength with high tensile strength. SF is usually dissolved in water-based solvents and can be easily reconstructed into a variety of material formats, including films, mats, hydrogels, and sponges, by various fabrication techniques (spin coating, electrospinning, freeze-drying, and physical or chemical crosslinking). Furthermore, SF is a feasible material used in many biomedical applications, including tissue engineering (3D scaffolds, wounds dressing), cancer therapy (mimicking the tumor microenvironment), controlled drug delivery (SF-based complexes), and bone, eye and skin regeneration. In this review, we describe the structure, composition, general properties, and structure-properties relationship of SF. In addition, the main methods used for ecological extraction and processing of SF that make it a green material are discussed. Lastly, technological advances in the use of SF-based materials are addressed, especially in healthcare applications such as tissue engineering and cancer therapeutics.
Collapse
Affiliation(s)
- Cristian Lujerdean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (D.S.D.)
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (D.S.D.)
| | | | | |
Collapse
|
17
|
Nanofiber Systems as Herbal Bioactive Compounds Carriers: Current Applications in Healthcare. Pharmaceutics 2022; 14:pharmaceutics14010191. [PMID: 35057087 PMCID: PMC8781881 DOI: 10.3390/pharmaceutics14010191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Nanofibers have emerged as a potential novel platform due to their physicochemical properties for healthcare applications. Nanofibers’ advantages rely on their high specific surface-area-to-volume and highly porous mesh. Their peculiar assembly allows cell accommodation, nutrient infiltration, gas exchange, waste excretion, high drug release rate, and stable structure. This review provided comprehensive information on the design and development of natural-based polymer nanofibers with the incorporation of herbal medicines for the treatment of common diseases and their in vivo studies. Natural and synthetic polymers have been widely used for the fabrication of nanofibers capable of mimicking extracellular matrix structure. Among them, natural polymers are preferred because of their biocompatibility, biodegradability, and similarity with extracellular matrix proteins. Herbal bioactive compounds from natural extracts have raised special interest due to their prominent beneficial properties in healthcare. Nanofiber properties allow these systems to serve as bioactive compound carriers to generate functional matrices with antimicrobial, anti-inflammatory, antioxidant, antiseptic, anti-viral, and other properties which have been studied in vitro and in vivo, mostly to prove their wound healing capacity and anti-inflammation properties.
Collapse
|
18
|
Abstract
Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Bae SB, Kim E, Chathuranga K, Lee JS, Park WH. Gelation and the antioxidant and antibacterial properties of silk fibroin/tannic acid/Zn2+ mixtures. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Grewal MG, Highley CB. Electrospun hydrogels for dynamic culture systems: advantages, progress, and opportunities. Biomater Sci 2021; 9:4228-4245. [PMID: 33522527 PMCID: PMC8205946 DOI: 10.1039/d0bm01588a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The extracellular matrix (ECM) is a water-swollen, tissue-specific material environment in which biophysiochemical signals are organized and influence cell behaviors. Electrospun nanofibrous substrates have been pursued as platforms for tissue engineering and cell studies that recapitulate features of the native ECM, in particular its fibrous nature. In recent years, progress in the design of electrospun hydrogel systems has demonstrated that molecular design also enables unique studies of cellular behaviors. In comparison to the use of hydrophobic polymeric materials, electrospinning hydrophilic materials that crosslink to form hydrogels offer the potential to achieve the water-swollen, nanofibrous characteristics of endogenous ECM. Although electrospun hydrogels require an additional crosslinking step to stabilize the fibers (allowing fibers to swell with water instead of dissolving) in comparison to their hydrophobic counterparts, researchers have made significant advances in leveraging hydrogel chemistries to incorporate biochemical and dynamic functionalities within the fibers. Consequently, dynamic biophysical and biochemical properties can be engineered into hydrophilic nanofibers that would be difficult to engineer in hydrophobic systems without strategic and sometimes intensive post-processing techniques. This Review describes common methodologies to control biophysical and biochemical properties of both electrospun hydrophobic and hydrogel nanofibers, with an emphasis on highlighting recent progress using hydrogel nanofibers with engineered dynamic complexities to develop culture systems for the study of biological function, dysfunction, development, and regeneration.
Collapse
Affiliation(s)
- M Gregory Grewal
- Department of Chemical Engineering, University of Virginia, VA 22903, USA.
| | | |
Collapse
|
21
|
Dual-crosslinked silk fibroin hydrogels with elasticity and cytocompatibility for the regeneration of articular cartilage. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Kim E, Seok JM, Bae SB, Park SA, Park WH. Silk Fibroin Enhances Cytocompatibilty and Dimensional Stability of Alginate Hydrogels for Light-Based Three-Dimensional Bioprinting. Biomacromolecules 2021; 22:1921-1931. [PMID: 33840195 DOI: 10.1021/acs.biomac.1c00034] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) bioprinting is a technology under active study for use in tissue engineering and regenerative medicine. Bioink comprises cells and polymers and is the essential material for 3D bioprinting. The characteristics of the bioink affect its printability, gelation behavior, and cell compatibility. In this study, alginate derivatives were synthesized to induce rapid gelation, and a bioink was prepared by mixing these alginate derivatives with silk fibroin to enhance cell compatibility. A low-concentration (3 wt %) alginate/silk fibroin (Alg/SF) bioink was pregelated by the ionic cross-linking of Alg to increase the viscosity for 3D printing. The rheological and mechanical properties were analyzed using a rheometer and a texture meter, respectively. Analysis of cell viability and proliferation using fibroblasts (NIH-3T3) in the bioinks showed that the Alg/SF bioink has improved cytocompatibility compared to that of conventional Alg bioinks, making it a promising material for tissue engineering.
Collapse
Affiliation(s)
- Eunu Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Ji Min Seok
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Su Bin Bae
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|