1
|
Zhong Q, Huo S, Wang C, Ye G, Zhang Q, Wang H, Liu Z. A Hyperbranched Phosphorus/Nitrogen/Silicon-Containing Polymer as a Multifunctional Additive for Epoxy Resins. Macromol Rapid Commun 2024:e2400801. [PMID: 39526322 DOI: 10.1002/marc.202400801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
High-performance, versatile epoxy resins (EPs) are used in a variety of fields, but the manufacture of transparent, fireproof, and strong EPs remains a major challenge. The hyperbranched, multifunctional flame retardant (DSi) is prepared by using diethanolamine, polyformaldehyde, diphenylphosphine oxide, and phenyltrimethoxysilane as raw materials in this work. When the additional amount of DSi is only 2 wt.%, the EP-DSi2 sample reaches a vertical burning (UL-94) V-0, and its limiting oxygen index (LOI) is 32.8%. When the content of DSi is 3 wt.%, the peak heat release rate (PHRR) and total smoke production (TSP) of EP-DSi samples are 43.8% and 21.4% lower than those of EP. The good compatibility of DSi and EP endows EP-DSi with high transparency, and the hyperbranched structure of DSi makes EP-DSi have obviously enhanced mechanical strength and toughness. The enhanced fire safety of EP-DSi is mainly due to the promoting carbonization and radical quenching effects of DSi. This paper offers a comprehensive design concept aimed at creating high-performance epoxy resins with good optical, mechanical, and flame-retardant properties, which have broad application prospects.
Collapse
Affiliation(s)
- Qian Zhong
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Siqi Huo
- Centre for Future Materials, School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Cheng Wang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guofeng Ye
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qi Zhang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hao Wang
- Centre for Future Materials, School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| |
Collapse
|
2
|
Wang J, Yu S, Xiao S. Research progress of triazine flame retardants. Macromol Res 2023. [DOI: 10.1007/s13233-023-00157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Wang W, Chen G, Wu S, Liu Y, Wang Q. Solvent‐free synthesis of phosphate‐containing imidazole fluid for flame retardant one‐component epoxy resin with long pot life, low curing temperature and fast curing rate. J Appl Polym Sci 2022. [DOI: 10.1002/app.53509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Wang
- Department of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu China
| | - Gang Chen
- Polymer Research Center Baosheng Science and Technology Innovation Co., Ltd. Nanjing Jiangsu China
| | - Shulong Wu
- Polymer Research Center Baosheng Science and Technology Innovation Co., Ltd. Nanjing Jiangsu China
| | - Yuan Liu
- Department of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu China
| | - Qi Wang
- Department of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu China
| |
Collapse
|
4
|
Ye G, Huo S, Wang C, Song P, Fang Z, Wang H, Liu Z. Durable flame-retardant, strong and tough epoxy resins with well-preserved thermal and optical properties via introducing a bio-based, phosphorus-phosphorus, hyperbranched oligomer. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Wang S, Wu W, Chen Q, Ding Z, Li S, Zhang A, Tang T, Liu J, Okoye PU. Preparation of DOPO‐derived magnesium phosphate whisker and its synergistic effect with ammonium polyphosphate on the flame retardancy and mechanical property of epoxy resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.53430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Song Wang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Weidong Wu
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Qi Chen
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Zhan Ding
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Sanxi Li
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Ailing Zhang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science Changchun China
| | - Jie Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science Changchun China
| | - Patrick U. Okoye
- Laboratorio de Bioenergía Instituto de Energías Renovables (IER‐UNAM) Temixco Mexico
| |
Collapse
|
6
|
Synthesis of a novel phosphorus-containing melamine cyanurate derivative to enhance the fire resistance and mechanical properties of epoxy resin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Yuan Z, Shu Z, Qi L, Cai W, Liu W, Wang J, Derradji M, Wang Y. Curing behavior, mechanical, and flame‐retardant properties of epoxy‐based composites filled by expandable graphite and ammonium polyphosphate. J Appl Polym Sci 2022. [DOI: 10.1002/app.53267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhi‐Gang Yuan
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Zhao‐Hui Shu
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Liang Qi
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Wan‐An Cai
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Wen‐Bin Liu
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Mehdi Derradji
- UER Procédésénergétiques, EcoleMilitairePolytechnique Algiers Algeria
| | - Yan‐hui Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science Changchun China
| |
Collapse
|
8
|
Sun Y, Zhong S, Luo Q, Yu B, Song J, Tan D. A vanillin‐derived flame retardant based on 2‐aminopyrimidine for enhanced flame retardancy and mechanical properties of epoxy resin. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yulin Sun
- School of Life Science and Technology Lingnan Normal University Zhanjiang People's Republic of China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Zhanjiang Guangdong China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Zhanjiang Guangdong China
- College Food Science and Technology Guangdong Ocean University Zhanjiang Guangdong People's Republic of China
| | - Qinqin Luo
- School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
| | - Biao Yu
- School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
| | - Jiangli Song
- School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
| | - Dexin Tan
- School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
| |
Collapse
|
9
|
Wang W, Lei L, Bao Q, Liu Y, Wang Q. Synthesis of a triazine charring agent containing hydroxyl and triazine ring and its flame retardant application in thermoplastic polyolefin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Li Lei
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Qiuru Bao
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Yuan Liu
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| |
Collapse
|
10
|
Yu H, Tian L, Li T, Zhu Y, Zhu A, Guo X, Liu K, Yang B, Guo J, Mu B, Cui J. Cyclotriphosphazene hyperbranched P/N/Si prepared flame retardants improve mechanical properties and flame retardancy of epoxy resins. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hailong Yu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| | - Li Tian
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| | - Ting Li
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| | - Yingxue Zhu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| | - Anjun Zhu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| | - Xiaoqian Guo
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| | - Kangli Liu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| | - Baoping Yang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| | - Junhong Guo
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| | - Bo Mu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| | - Jinfeng Cui
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou China
| |
Collapse
|
11
|
Hou Z, Li C, Wang H, Li B, Cai H. The P/Si synergistic effect enduing epoxy resin with improved flame retardancy and outstanding mechanical properties. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221080661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The bisphenol F epoxy resin (DGEBF) reacted with 10-(2,5-Dihydroxyphenyl)-10H-9-oxa-10-phospha-phenantbrene-10-oxide (ODOPB) and phenyltrimethoxysilane (PTMS) to obtain a novel epoxy resin containing both phosphorus and silicon (EP-P/Si). EP-P/Si exhibited evidently improved flame retardancy, with a limited oxygen index value of 33.4% and UL-94 V-1 rating acquired. In cone calorimeter test, its peak heat release rate (PHRR), total heat release (THR), average effective heat of combustion (av-EHC), and total smoke production (TSP) were reduced by 36.0%, 19.5%,11.5%, and 7.2% compared with neat epoxy resin (EP), respectively, indicating that the P/Si synergistic effect not only improved the flame retardancy but also inhibited the smoke release. The flame retardancy mechanism was studied by analysis of char residue and pyrolysis behavior in gas phase. Scanning electron microscopy (SEM) results exhibited that EP-P/Si formed a dense and compact carbon layer acting as a barrier to inhibit further combustion. And the Fourier transform infrared (FTIR) spectra, laser Raman spectroscopy (LRS), and X-ray photoelectron spectroscopy (XPS) results indicated that it had good thermal stability. In addition, the pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) results suggested that the phosphorus-containing radicals (·PO2) that had quenching effect existed in the gas phase. While the flame retardancy got improved, EP-P/Si also exhibited excellent mechanical properties, with an improvement of 31.8%, 6.2%, and 369.7% in tensile strength, flexural strength, and impact strength compared with EP, respectively.
Collapse
Affiliation(s)
- Zhuang Hou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chuan Li
- Shanghai Composites Science & Technology Co., Ltd., Shanghai, China
| | - Huihuan Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Bolun Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Haopeng Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
- Institute of Advanced Materials Manufacturing Equipment and Technology, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
12
|
Li S, Jiang S, Gong S, Ma S, Yang H, Pan K, Deng J. Preparation Methods, Performance Improvement Strategies, and Typical Applications of Polyamide Foams. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|