1
|
Lee JE, Lee D, Lee J, Park YK. Current methods for plastic waste recycling: Challenges and opportunities. CHEMOSPHERE 2025; 370:143978. [PMID: 39701312 DOI: 10.1016/j.chemosphere.2024.143978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The practical use of plastics has rapidly increased owing to their superior physicochemical properties. Despite their excellent physicochemical properties, the short lifespan of plastics has inevitably led to a substantial generation of plastic waste. As such, strategic mitigation of the hazardous potential of plastic waste has been regarded as significant in waste management. In particular, establishing a reliable recycling platform for packaging plastic waste is of great importance considering its massive generation. To identify a strategic means of abating the hazardous potential of plastic waste, legislative enactment for their legal management must also be implemented. This review emphasizes the mechanical and chemical recycling methods for polyethylene, polypropylene, polyethylene terephthalate, polystyrene, and polyvinyl chloride, and discusses a technical platform for converting plastic waste into value-added chemical products. This study also offers a perspective on sustainable valorization as a practical alternative to circular resources.
Collapse
Affiliation(s)
- Jung Eun Lee
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
2
|
Sudalaimuthu P, Ali U, Sathyamurthy R. Optimization of process parameters of catalytic pyrolysis using natural zeolite and synthetic zeolites on yield of plastic oil through response surface methodology. Sci Rep 2024; 14:28442. [PMID: 39557878 PMCID: PMC11574058 DOI: 10.1038/s41598-024-78180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
This study aims to reach a sustainable solution for waste management of medical plastics through value-added product extraction. It uses the DOE technique to examine the effect of natural zeolite and synthetic Al2O3 and SiO2 as catalysts. A small lab-scale pyrolysis setup was used for medical plastic waste management treatment. Pyrolysis of medical plastics with temperature range (350-450 °C), three catalysts, and wt.% are examined. This process is designed for 3 factors and 3 levels, such as type of catalyst, catalyst wt.%, and temperature, to create an L9 orthogonal array. At the same time, the heating rate and residence time are maintained constant at 5 °C/min and 75 minutes, respectively. Furthermore, this study analyzed the input variables in catalytic pyrolysis using response surface methodology. As a result of the study, generating the regression equation for oil yield, F and P values assure the model is significant. Optimization result shows the type of catalyst, temperature, and catalyst concentration values are found as aluminum oxide, 376 °C, and 6.6 wt.%, respectively. HDPE and LDPE oil yield a value of 58.3648 and 61.2051 wt%, respectively, under the optimum variables condition. For oil yield prediction, HDPE and LDPE's correlation coefficient (R2) were 0.9949 and 0.9943, respectively. Authentication of the model response using a regression equation validated with the experimental result shows good agreement. The produced medical plastic oil has a density, viscosity, flash & fire point, carbon residue, and cetane number 904 kg/m3, 2.3 cSt, 42 & 45 °C, 7.1 wt.% and 51 respectively. Finally, this study concludes that plastic oil extraction from medical waste through catalytic pyrolysis can be a potential source of alternative fuels in IC engines. Priority to optimization and low-cost catalysts highlights medical plastics waste management under the socio-economic model.
Collapse
Affiliation(s)
- Pitchaiah Sudalaimuthu
- Center For Advanced Energy Materials, SRM TRP Engineering College, Tiruchirapalli, Tamil Nadu, 621105, India
- Center for Research, SRM Institute of Science and Technology, 621105, Tiruchirapalli, India
| | - Usman Ali
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, 31621, Dhahran, Saudi Arabia
- IRC for Advanced Materials, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, 31621, Dhahran, Saudi Arabia.
- IRC Sustainable Energy Systems (IRC-SES), King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
- Interdisciplinary Research Center for Industrial Nuclear Energy (IRC-INE), King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
| |
Collapse
|
3
|
Dai L, Zhou N, Lv Y, Cobb K, Chen P, Wang Y, Liu Y, Zou R, Lei H, Mohamed BA, Ruan R, Cheng Y. Catalytic reforming of polyethylene pyrolysis vapors to naphtha range hydrocarbons with low aromatic content over a high silica ZSM-5 zeolite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157658. [PMID: 35908703 DOI: 10.1016/j.scitotenv.2022.157658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, the microwave-assisted pyrolysis coupled with ex-situ catalytic reforming of polyethylene for naphtha range hydrocarbons, with low aromatic content, was investigated. Experimental results revealed that ZSM-5 zeolites with low SiO2/Al2O3 ratios led to high aromatic selectivity, while an extremely high SiO2/Al2O3 ratio significantly reduced the aromatic selectivity. The high selectivity of C5-C12 hydrocarbons (98.9 %) with low selectivity of C5-C12 aromatics (28.5 %) was obtained over a high silica ZSM-5 zeolite at a pyrolysis temperature of 500 °C, catalytic cracking temperature of 460 °C, and a weight hourly space velocity of 7 h-1. The liquid oil produced was mainly composed of C5-C12 olefins that can be easily converted into paraffin-rich naphtha by hydrogenation or hydrogen transfer reactions as the feedstock for new plastic manufacturing. 8 cycles of regeneration-reaction cycles were carried out successfully with little change on the product distribution, showing the great potential for continuous production of low-aromatic liquid oil. Catalyst characterization showed that the catalyst deactivation was primarily caused by coke deposition (approximately 16.0 wt%) on the surface of the catalysts, and oxidative regeneration was able to recover most of the pore structure and acidity of the zeolite by effectively removing coke. This study provides a better understanding for the plastic-to-naphtha process and even for scale-up studies.
Collapse
Affiliation(s)
- Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA; State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Nan Zhou
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yuancai Lv
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Rongge Zou
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza, Egypt
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA.
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA; Biochemical Engineering College, Beijing Union University, No. 18, Fatouxili 3 Area, Chaoyang District, Beijing 100023, China.
| |
Collapse
|