1
|
Jaya Prakash N, Wang X, Kandasubramanian B. Regenerated silk fibroin loaded with natural additives: a sustainable approach towards health care. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-38. [PMID: 36648394 DOI: 10.1080/09205063.2023.2170137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to World Health Organization (WHO), on average, 0.5 Kg of hazardous waste is generated per bed every day in high-income countries. The adverse effects imposed by synthetic materials and chemicals on the environment and humankind have urged researchers to explore greener technologies and materials. Amidst of all the natural fibers, silk fibroin (SF), by virtue of its superior toughness (6 × 104∼16 × 104 J/kg), tensile strength (47.2-67.7 MPa), tunable biodegradability, excellent Young's modulus (1.9-3.9 GPa), presence of functional groups, ease of processing, and biocompatibility has garnered an enormous amount of scientific interests. The use of silk fibroin conjoint with purely natural materials can be an excellent solution for the adverse effects of chemical-based treatment techniques. Considering this noteworthiness, vigorous research is going on in silk-based biomaterials, and it is opening up new vistas of opportunities. This review enswathes the structural aspects of silk fibroin along with its potency to form composites with other natural materials, such as curcumin, keratin, alginate, hydroxyapatite, hyaluronic acid, and cellulose, that can replace the conventionally used synthetic materials, providing a sustainable pathway to biomedical engineering. It was observed that a large amount of polar functional moieties present on the silk fibroin surface enables them to compatibilize easily with the natural additives. The conjunction of silk with natural additives initiates synergistic interactions that mitigate the limitations offered by individual units as well as enhance the applicability of materials. Further the current status and challenges in the commercialization of silk-based biomedical devices are discussed.
Collapse
Affiliation(s)
- Niranjana Jaya Prakash
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| | - Xungai Wang
- Fiber Science and Technology, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| |
Collapse
|
2
|
Lee MS, Hung CS, Phillips DA, Buck CC, Gupta MK, Lux MW. Silk fibroin as an additive for cell-free protein synthesis. Synth Syst Biotechnol 2020; 5:145-154. [PMID: 32637668 PMCID: PMC7320238 DOI: 10.1016/j.synbio.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023] Open
Abstract
Cell-free systems contain many proteins and metabolites required for complex functions such as transcription and translation or multi-step metabolic conversions. Research into expanding the delivery of these systems by drying or by embedding into other materials is enabling new applications in sensing, point-of-need manufacturing, and responsive materials. Meanwhile, silk fibroin from the silk worm, Bombyx mori, has received attention as a protective additive for dried enzyme formulations and as a material to build biocompatible hydrogels for controlled localization or delivery of biomolecular cargoes. In this work, we explore the effects of silk fibroin as an additive in cell-free protein synthesis (CFPS) reactions. Impacts of silk fibroin on CFPS activity and stability after drying, as well as the potential for incorporation of CFPS into hydrogels of crosslinked silk fibroin are assessed. We find that simple addition of silk fibroin increased productivity of the CFPS reactions by up to 42%, which we attribute to macromolecular crowding effects. However, we did not find evidence that silk fibroin provides a protective effects after drying as previously described for purified enzymes. Further, the enzymatic crosslinking transformations of silk fibroin typically used to form hydrogels are inhibited in the presence of the CFPS reaction mixture. Crosslinking attempts did not impact CFPS activity, but did yield localized protein aggregates rather than a hydrogel. We discuss the mechanisms at play in these results and how the silk fibroin-CFPS system might be improved for the design of cell-free devices.
Collapse
Affiliation(s)
- Marilyn S. Lee
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Chia-Suei Hung
- US Air Force Research Laboratory, 2179 12th St., B652/R122 Wright-Patterson Air Force Base, OH, 45433, USA
| | - Daniel A. Phillips
- US Naval Research Laboratory Center for Bio/Molecular Science and Engineering, Bldg. 42, Room 303 4555 Overlook Ave. Washington, DC 20375, UES Inc., 4401 Dayton Xenia Rd., Beavercreek, OH 45432, USA
| | - Chelsea C. Buck
- US Air Force Research Laboratory, 2179 12th St., B652/R122 Wright-Patterson Air Force Base, OH, 45433, USA
- US Naval Research Laboratory Center for Bio/Molecular Science and Engineering, Bldg. 42, Room 303 4555 Overlook Ave. Washington, DC 20375, UES Inc., 4401 Dayton Xenia Rd., Beavercreek, OH 45432, USA
| | - Maneesh K. Gupta
- US Air Force Research Laboratory, 2179 12th St., B652/R122 Wright-Patterson Air Force Base, OH, 45433, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
3
|
Pignatelli C, Perotto G, Nardini M, Cancedda R, Mastrogiacomo M, Athanassiou A. Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate. Acta Biomater 2018; 73:365-376. [PMID: 29673841 DOI: 10.1016/j.actbio.2018.04.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/31/2018] [Accepted: 04/12/2018] [Indexed: 02/03/2023]
Abstract
Human platelet lysate (hPL) is a pool of growth factors and cytokines able to induce regeneration of different tissues. Despite its good potentiality as therapeutic tool for regenerative medicine applications, hPL has been only moderately exploited in this field. A more widespread adoption has been limited because of its rapid degradation at room temperature that decreases its functionality. Another limiting factor for its extensive use is the difficulty of handling the hPL gels. In this work, silk fibroin-based patches were developed to address several points: improving the handling of hPL, enabling their delivery in a controlled manner and facilitating their storage by creating a device ready to use with expanded shelf life. Patches of fibroin loaded with hPL were synthesized by electrospinning to take advantage of the fibrous morphology. The release kinetics of the material was characterized and tuned through the control of fibroin crystallinity. Cell viability assays, performed with primary human dermal fibroblasts, demonstrated that fibroin is able to preserve the hPL biological activity and prolong its shelf-life. The strategy of storing and preserving small active molecules within a naturally-derived, protein-based fibrous scaffold was successfully implemented, leading to the design of a biocompatible device, which can potentially simplify the storage and the application of the hPL on a human patient, undergoing medical procedures such as surgery and wound care. STATEMENT OF SIGNIFICANCE Human platelets lysate (hPL) is a mixture of growth factors and cytokines able to induce the regeneration of damaged tissues. This study aims at enclosing hPL in a silk fibroin electrospun matrix to expand its utilization. Silk fibroin showed the ability to preserve the hPL activity at temperature up to 60 °C and the manipulation of fibroin's crystallinity provided a tool to modulate the hPL release kinetic. This entails the possibility to fabricate the hPL silk fibroin patches in advance and store them, resulting in an easy and fast accessibility and an expanded use of hPL for wound healing.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; DIBRIS, University of Genoa, via Opera Pia 13, 16145 Genoa, Italy.
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marta Nardini
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Maddalena Mastrogiacomo
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | | |
Collapse
|
4
|
|
5
|
Lin N, Toh GW, Feng Y, Liu XY, Xu H. Two-photon fluorescent Bombyx mori silk by molecular recognition functionalization. J Mater Chem B 2014; 2:2136-2143. [DOI: 10.1039/c3tb21602k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two-photon fluorescent (TPF) Bombyx mori silk fibers were acquired for bioimaging by molecular recognition functionalization.
Collapse
Affiliation(s)
- Naibo Lin
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
- Research Institute for Biomimetics and Soft Matter & College of Materials
- Xiamen University
| | - Guoyang William Toh
- MIT-Singapore Alliance
- Department of Physics
- National University of Singapore
- Singapore, Singapore
| | - Yan Feng
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
| | - X. Y. Liu
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
- Research Institute for Biomimetics and Soft Matter & College of Materials
- Xiamen University
| | - Hongyao Xu
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
| |
Collapse
|
6
|
Pritchard EM, Dennis PB, Omenetto F, Naik RR, Kaplan DL. Review physical and chemical aspects of stabilization of compounds in silk. Biopolymers 2012; 97:479-98. [PMID: 22270942 DOI: 10.1002/bip.22026] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 12/13/2022]
Abstract
The challenge of stabilization of small molecules and proteins has received considerable interest. The biological activity of small molecules can be lost as a consequence of chemical modifications, while protein activity may be lost due to chemical or structural degradation, such as a change in macromolecular conformation or aggregation. In these cases, stabilization is required to preserve therapeutic and bioactivity efficacy and safety. In addition to use in therapeutic applications, strategies to stabilize small molecules and proteins also have applications in industrial processes, diagnostics, and consumer products like food and cosmetics. Traditionally, therapeutic drug formulation efforts have focused on maintaining stability during product preparation and storage. However, with growing interest in the fields of encapsulation, tissue engineering, and controlled release drug delivery systems, new stabilization challenges are being addressed; the compounds or protein of interest must be stabilized during: (1) fabrication of the protein or small molecule-loaded carrier, (2) device storage, and (3) for the duration of intended release needs in vitro or in vivo. We review common mechanisms of compound degradation for small molecules and proteins during biomaterial preparation (including tissue engineering scaffolds and drug delivery systems), storage, and in vivo implantation. We also review the physical and chemical aspects of polymer-based stabilization approaches, with a particular focus on the stabilizing properties of silk fibroin biomaterials.
Collapse
Affiliation(s)
- Eleanor M Pritchard
- Department for Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | |
Collapse
|
7
|
Pritchard EM, Kaplan DL. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv 2011; 8:797-811. [PMID: 21453189 DOI: 10.1517/17425247.2011.568936] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Given the benefits of polymer drug delivery implants over traditional periodic systemic administration, the development of biomaterial systems with the necessary properties (biocompatibility, degradation, stabilization, controllability) is paramount. Silk fibroin represents a promising, naturally derived polymer for local, controlled, sustained drug release from fully degrading implants and the polymer can be processed into a broad array of material formats. AREAS COVERED This review provides an overview of silk biomaterials for drug delivery, especially those that can function as long-term depots. Fundamentals of structure and assembly, processing options, control points and specific examples of implantable silk drug delivery systems (sponges, films) and injectable systems (microspheres, hydrogels) from the 1990s and onwards are reviewed. EXPERT OPINION Owing to its unique material properties, stabilization effects and tight controllability, silk fibroin is a promising biomaterial for implantable and injectable drug delivery applications. Many promising control points have been identified, and characterization of the relationships between silk processing and/or material properties and the resulting drug loading and release kinetics will ultimately enhance the overall utility of this unique biomaterial. The ever-expanding biomaterial 'tool kit' that silk provides will eventually allow the simultaneous optimization of implant structure, material properties and drug release behavior that is needed to maximize the cost-efficiency, convenience, efficacy and safety of many new and existing therapeutics, especially those that cannot be delivered by means of traditional administration approaches.
Collapse
Affiliation(s)
- Eleanor M Pritchard
- Tufts University, Department of Biomedical Engineering, Medford, MA 02155, USA
| | | |
Collapse
|
8
|
|
9
|
Inspiration from Natural Silks and Their Proteins. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0065-2377(08)00205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
|
11
|
Putthanarat S, Eby R, Kataphinan W, Jones S, Naik R, Reneker D, Farmer B. Electrospun Bombyx mori gland silk. POLYMER 2006. [DOI: 10.1016/j.polymer.2005.06.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Gil ES, Frankowski DJ, Bowman MK, Gozen AO, Hudson SM, Spontak RJ. Mixed Protein Blends Composed of Gelatin andBombyx moriSilk Fibroin: Effects of Solvent-Induced Crystallization and Composition. Biomacromolecules 2006; 7:728-35. [PMID: 16529407 DOI: 10.1021/bm050622i] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel protein blends have been prepared by mixing gelatin (G) with Bombyx mori silk fibroin (SF) and using aqueous methanol (MeOH) to post-induce SF crystallization. When co-cast from solution, amorphous blends of these polymers appear homogeneous, as discerned from visual observation, microscopy, and Fourier-transform infrared (FTIR) spectroscopy. Upon subsequent exposure to aqueous MeOH, SF undergoes a conformational change from random coil to beta sheet. This transformation occurs in pure SF, as well as in each of the G/SF blends, according to X-ray diffractometry and thermal calorimetry. The influence of MeOH-induced SF crystallization on structure and property development has been ascertained in terms of preparation history and blend composition. Thermal gravimetric analysis reveals that the presence of beta sheets in SF and G/SF blends improves thermal stability, while extensional rheometry confirms that SF crystallization enhances the tensile properties of the blends. By preserving a support scaffold above the G helix-to-coil transition temperature, the formation of crystalline SF networks in G/SF blends can be used to stabilize G-based hydrogels for biomaterial and pharmaceutical purposes. The present study not only examines the properties of G/SF blends before and after SF crystallization, but also establishes the foundation for future research into thermally responsive G/SF bioconjugates.
Collapse
Affiliation(s)
- Eun S Gil
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, 27695, USA
| | | | | | | | | | | |
Collapse
|