1
|
Yamaguchi T, Chong SH, Yoshida N. Effects of intramolecular chain conformation on the hydration and miscibility of polyethylene glycol in water studied by means of polymer reference interaction site model theory. J Chem Phys 2023; 159:044901. [PMID: 37486060 DOI: 10.1063/5.0159130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
To examine the conventional idea that the gauche conformation of the OCCO dihedral angle promotes the dissolution of polyethylene glycol (PEG) in water through strong hydration, the thermodynamic properties of liquid mixtures of PEG and water were studied by means of polymer reference interaction site model (PRISM) theory. The intramolecular correlation functions required as input for PRISM theory were calculated by the generator matrix method, accompanied by changes in the distribution of dihedral angles. In the infinite dilution limit, the increased probability of gauche conformation of the OCCO dihedral angles stabilizes the hydration of PEG through enhanced hydrogen bonding between the ether oxygen of PEG and water. The mixing Gibbs energies of the liquid mixtures were also calculated in the whole concentration range based on the Gibbs-Duhem equation, as per our recent proposal. A liquid-liquid phase separation was observed when all the dihedral angles of PEG were in the trans conformation; for the liquid mixture to be miscible in the whole concentration range, the introduction of the OCCO gauche conformation was found to be indispensable. The above theoretical results support the conventional idea that the OCCO gauche conformation is important for the high miscibility of PEG and water.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Song-Ho Chong
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Oe-honmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan
| | - Norio Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
2
|
Macias E, Travesset A. Hydrogen Bond Network Disruption by Hydration Layers in Water Solutions with Salt and Hydrogen-Bonding Polymers (PEO). J Phys Chem B 2023. [PMID: 37478338 DOI: 10.1021/acs.jpcb.3c02505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
A mean field theory model describing the interaction of ion hydration layers with the network of hydrogen bonds of both water and the nonionic polymer poly(ethylene oxide) (PEO) is presented. The predictions of the model for types and statistics of hydrogen bonds, the number of water molecules bound to PEO, or their dependence on temperature are successfully verified from all-atom simulations at different NaCl and PEO concentrations. Furthermore, our simulations show that the binding of cations to PEO increases monotonically with salt concentration, in agreement with recent experimental results, through a mechanism in which the sum of the number of bound water and cations is independent of salt concentration. The model introduced is general and can describe any salt or hydrogen-bond-forming polymer.
Collapse
Affiliation(s)
- Elizabeth Macias
- Department of Physics and Astronomy, Iowa State University and Ames Lab, Ames, Iowa 50011, United States
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University and Ames Lab, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Ensing B, Tiwari A, Tros M, Hunger J, Domingos SR, Pérez C, Smits G, Bonn M, Bonn D, Woutersen S. On the origin of the extremely different solubilities of polyethers in water. Nat Commun 2019; 10:2893. [PMID: 31253797 PMCID: PMC6599002 DOI: 10.1038/s41467-019-10783-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/21/2019] [Indexed: 11/09/2022] Open
Abstract
The solubilities of polyethers are surprisingly counter-intuitive. The best-known example is the difference between polyethylene glycol ([-CH2-CH2-O-]n) which is infinitely soluble, and polyoxymethylene ([-CH2-O-]n) which is completely insoluble in water, exactly the opposite of what one expects from the C/O ratios of these molecules. Similar anomalies exist for oligomeric and cyclic polyethers. To solve this apparent mystery, we use femtosecond vibrational and GHz dielectric spectroscopy with complementary ab initio calculations and molecular dynamics simulations. We find that the dynamics of water molecules solvating polyethers is fundamentally different depending on their C/O composition. The ab initio calculations and simulations show that this is not because of steric effects (as is commonly believed), but because the partial charge on the O atoms depends on the number of C atoms by which they are separated. Our results thus show that inductive effects can have a major impact on aqueous solubilities.
Collapse
Affiliation(s)
- Bernd Ensing
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.
| | - Ambuj Tiwari
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Martijn Tros
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Department of Molecular spectroscopy, Ackermannweg 10, 55128, Mainz, Germany.
| | - Sérgio R Domingos
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Gertien Smits
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Department of Molecular spectroscopy, Ackermannweg 10, 55128, Mainz, Germany.
| | - Daniel Bonn
- Institute of Physics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Yu K, Zhou H, Wang X, Du Z, Mi J. From thermodynamics to kinetics: Theoretical study of CO2 dissolving in poly (lactic acid) melt. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Diffusion Mode Transition between Gaussian and Non-Gaussian of Nanoparticles in Polymer Solutions. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2237-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Martin TB, Gartner TE, Jones RL, Snyder CR, Jayaraman A. pyPRISM: A Computational Tool for Liquid-State Theory Calculations of Macromolecular Materials. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tyler B. Martin
- National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | - Ronald L. Jones
- National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Chad R. Snyder
- National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
7
|
Wei Z, Li S, Ning N, Tian M, Zhang L, Mi J. Theoretical and Experimental Insights into the Phase Transition of Rubber/Plastic Blends during Dynamic Vulcanization. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhaoyang Wei
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shangqing Li
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nanying Ning
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianguo Mi
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Wang L, Zhou H, Wang X, Mi J. Mechanism of bubble nucleation in poly(ε-caprolactone) foaming at low temperature. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Xu Q, Chen L. Integral equation theory for atactic polystyrene nanocomposite melts with a multi-site model. J Chem Phys 2014; 140:234901. [PMID: 24952562 DOI: 10.1063/1.4882355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, a multi-site chain model was incorporated into the polymer reference interaction site model to investigate the structure and properties of atactic polystyrene (aPS) melt and the structural correlations of dilute spherical nanoparticles dissolved in aPS melt. The theoretically calculated X-ray scattering intensities, solubility parameters and intermolecular correlation functions of aPS and its nanocomposites are found to be in agreement with the corresponding molecular simulation and experimental data. The theory was further employed to investigate the distribution functions of different size effects of aPS-nanoparticle system with consideration of the potential of mean force and depletion force. The aggregation of large nanoparticles increases with the increase of the nanoparticle-site size ratio in the infinitely dilute limit. The results show that the present theory can be used to investigate the structure of aPS melt and its nanocomposite, and give a further understanding of the filler dispersion and aggregation. All the observations indicate molecular-level details of the underlying mechanisms, providing useful information for the future design control of new aPS-nanocomposite materials with tailored properties.
Collapse
Affiliation(s)
- Qinzhi Xu
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lan Chen
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
10
|
Xu M, Chen J, Zhang C, Du Z, Mi J. A theoretical study of structure–solubility correlations of carbon dioxide in polymers containing ether and carbonyl groups. Phys Chem Chem Phys 2011; 13:21084-92. [DOI: 10.1039/c1cp22671a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Xu Q, Mi J, Zhong C. Structure of poly(ethylene glycol)–water mixture studied by polymer reference interaction site model theory. J Chem Phys 2010; 133:174104. [DOI: 10.1063/1.3502108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Woelki S, Kohler HH, Krienke H, Schmeer G. Improvements of DRISM calculations: symmetry reduction and hybrid algorithms. Phys Chem Chem Phys 2008; 10:898-910. [DOI: 10.1039/b712306j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Sun L, Siepmann JI, Klotz WL, Schure MR. Retention in gas–liquid chromatography with a polyethylene oxide stationary phase: Molecular simulation and experiment. J Chromatogr A 2006; 1126:373-80. [PMID: 16814798 DOI: 10.1016/j.chroma.2006.05.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/20/2006] [Accepted: 05/30/2006] [Indexed: 11/16/2022]
Abstract
Configurational-bias Monte Carlo simulations in the isobaric-isothermal Gibbs ensemble were carried out to investigate the partitioning of normal alkanes, primary and secondary alcohols, symmetric alkyl ethers and arenes between a helium vapor phase and a polyethylene oxide stationary phase (M(W)=382 g mol(-1)). The united-atom version of the transferable potentials for phase equilibria force field was used to model all solutes, polyethylene oxide and helium. The Gibbs free energies of transfer and Kovats retention indices of the solutes were calculated directly from the partition constants at two different temperatures, 353 and 393 K. Chromatographic experiments on a Carbowax 20M retentive phase were performed for the same set of solutes and temperatures ranging from 333 to 413 K. The predicted retention indices for alcohols, ethers and arenes are overestimated by about 120, 70 and 20 retention index units, respectively, pointing to an overestimation of the first-order electrostatic interactions in the model system. Molecular-level analysis shows that hydrogen-bonding and dipole-dipole interactions lead to orientational ordering for the alcohol and ether analytes, whereas the weaker dipole-quadrupole interactions for the arene solutes are not sufficient to induce orientational ordering. The retention indices of alcohols and ethers decrease with increasing temperature because of the large entropic cost of hydrogen-bonding and orientational ordering. In contrast, the retention indices for arenes increase with increasing temperature because the entropic cost of cavity formation is smaller for arenes than for comparable alkanes.
Collapse
Affiliation(s)
- Li Sun
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|