1
|
Liu Y, Munsayac A, Hall I, Keane SC. Solution Structure of NPSL2, A Regulatory Element in the oncomiR-1 RNA. J Mol Biol 2022; 434:167688. [PMID: 35717998 PMCID: PMC9474619 DOI: 10.1016/j.jmb.2022.167688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022]
Abstract
The miR-17 ∼ 92a polycistron, also known as oncomiR-1, is commonly overexpressed in multiple cancers and has several oncogenic properties. OncomiR-1 encodes six constituent microRNAs (miRs), each enzymatically processed with different efficiencies. However, the structural mechanism that regulates this differential processing remains unclear. Chemical probing of oncomiR-1 revealed that the Drosha cleavage sites of pri-miR-92a are sequestered in a four-way junction. NPSL2, an independent stem loop element, is positioned just upstream of pri-miR-92a and sequesters a crucial part of the sequence that constitutes the basal helix of pri-miR-92a. Disruption of the NPSL2 hairpin structure could promote the formation of a pri-miR-92a structure that is primed for processing by Drosha. Thus, NPSL2 is predicted to function as a structural switch, regulating pri-miR-92a processing. Here, we determined the solution structure of NPSL2 using solution NMR spectroscopy. This is the first high-resolution structure of an oncomiR-1 element. NPSL2 adopts a hairpin structure with a large, but highly structured, apical and internal loops. The 10-bp apical loop contains a pH-sensitive A+·C mismatch. Additionally, several adenosines within the apical and internal loops have elevated pKa values. The protonation of these adenosines can stabilize the NPSL2 structure through electrostatic interactions. Our study provides fundamental insights into the secondary and tertiary structure of an important RNA hairpin proposed to regulate miR biogenesis.
Collapse
Affiliation(s)
- Yaping Liu
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA. https://twitter.com/YapingLiu5
| | - Aldrex Munsayac
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA. https://twitter.com/ihallu14
| | - Sarah C Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
The Facile Strategy of Improving the Long-Term Stability of Highly Transparent Polyvinyl Chloride by Introducing Unsaturated Zn Oleate and Uracil Derivatives. MATERIALS 2022; 15:ma15072672. [PMID: 35408009 PMCID: PMC9000714 DOI: 10.3390/ma15072672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/13/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023]
Abstract
In order to improve the initial color and the long-term heat stability of super-transparent polyvinyl chloride (PVC), a series of composite heat stabilizers consisting of unsaturated Zn oleate and uracil derivatives have been designed in this paper. The uracil derivatives are 1,3-dimethyl-6-amino-uracil (DAU) and 6,6′-diamino-1,1′,3,3′-tetramethyl-5,5′-(ethylidene)bisuracil (OSU). The static thermal stability, dynamic thermal stability, and transparency were used to evaluate the properties of the stabilized transparent PVC sheets. The results indicate that the compatibility between the stabilizer and PVC was greatly enhanced by introducing an unsaturated long-chain Zn oleate and a long alkyl chain bisuracil derivative. Through the thermal discoloration test, the best ratio of DAU/zinc oleate (DAU/Zn) and OSU/zinc oleate (OSU/Zn) was determined to be 4:1, with a total amount of 3 phr in 100 phr PVC. It was verified that the combination of zinc oleate with uracil derivatives could improve the long-term thermal stability of PVC, and the DAU/Zn was better than that of the OSU/Zn. In addition, through the transmission/haze verification, adding a proper amount of epoxidized soybean oil (ESBO) and phosphite ester to the OSU/Zn system has a certain synergistic effect. The thermal stability and transparency of PVC can be remarkably enhanced.
Collapse
|
3
|
Kuzniak-Glanowska E, Glanowski M, Kurczab R, Bojarski AJ, Podgajny R. Mining anion-aromatic interactions in the Protein Data Bank. Chem Sci 2022; 13:3984-3998. [PMID: 35440982 PMCID: PMC8985504 DOI: 10.1039/d2sc00763k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022] Open
Abstract
Mutual positioning and non-covalent interactions in anion–aromatic motifs are crucial for functional performance of biological systems. In this context, regular, comprehensive Protein Data Bank (PDB) screening that involves various scientific points of view and individual critical analysis is of utmost importance. Analysis of anions in spheres with radii of 5 Å around all 5- and 6-membered aromatic rings allowed us to distinguish 555 259 unique anion–aromatic motifs, including 92 660 structures out of the 171 588 structural files in the PDB. The use of a scarcely exploited (x, h) coordinate system led to (i) identification of three separate areas of motif accumulation: A – over the ring, B – over the ring-substituent bonds, and C – roughly in the plane of the aromatic ring, and (ii) unprecedented simultaneous comparative description of various anion–aromatic motifs located in these areas. Of the various residues considered, i.e. aminoacids, nucleotides, and ligands, the latter two exhibited a considerable tendency to locate in region Avia archetypal anion–π contacts. The applied model not only enabled statistical quantitative analysis of space around the ring, but also enabled discussion of local intermolecular arrangements, as well as detailed sequence and secondary structure analysis, e.g. anion–π interactions in the GNRA tetraloop in RNA and protein helical structures. As a purely practical issue of this work, the new code source for the PDB research was produced, tested and made freely available at https://github.com/chemiczny/PDB_supramolecular_search. The comprehensive analysis of non-redundant PDB macromolecular structures investigating anion distributions around all aromatic molecules in available biosystems is presented.![]()
Collapse
Affiliation(s)
| | - Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Niezapominajek 8 30-239 Kraków Poland
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences Smętna 12 31-343 Kraków Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences Smętna 12 31-343 Kraków Poland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
4
|
Yin X, Sun Y, Yang R, Qu L, Li Z. RNA-responsive fluorescent carbon dots for fast and wash-free nucleolus imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118381. [PMID: 32334324 DOI: 10.1016/j.saa.2020.118381] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
RNA as a carrier of genetic information plays a critical role in various physiological processes. RNA-rich nucleolus is usually employed as an important biomarker for many malignant diseases. Herein, RNA-responsive fluorescent carbon dots (CDs) were synthesized by a simple microwave method. Due to the presence of cationic benzothiazolium groups in the CDs, a "turn-on" fluorescence signal was achieved between CDs and RNA. The CDs exhibit excellent RNA selectivity and a good linear relationship with a detection limit of 0.62 μg/mL. The small particle size, polarity sensitivity and RNA response behavior of CDs realized fast and wash-free nucleolus imaging effectively. Overall, these CDs provide a powerful potential tool for monitoring cell nucleus activity and elucidating RNA dynamics.
Collapse
Affiliation(s)
- Xiaohui Yin
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Bis-uracil based high efficient heat stabilizers used in super transparent soft poly (vinyl chloride). Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.01.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Lucas X, Bauzá A, Frontera A, Quiñonero D. A thorough anion-π interaction study in biomolecules: on the importance of cooperativity effects. Chem Sci 2015; 7:1038-1050. [PMID: 29899893 PMCID: PMC5967298 DOI: 10.1039/c5sc01386k] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/05/2015] [Indexed: 12/23/2022] Open
Abstract
The importance of anion–π interactions in key biological processes is reported from a PDB analysis of anion–π interactions in biomolecules, also considering cooperativity effects by including other interactions.
Noncovalent interactions have a constitutive role in the science of intermolecular relationships, particularly those involving aromatic rings such as π–π and cation–π. In recent years, anion–π contact has also been recognized as a noncovalent bonding interaction with important implications in chemical processes. Yet, its involvement in biological processes has been scarcely reported. Herein we present a large-scale PDB analysis of the occurrence of anion–π interactions in proteins and nucleic acids. In addition we have gone a step further by considering the existence of cooperativity effects through the inclusion of a second noncovalent interaction, i.e. π-stacking, T-shaped, or cation–π interactions to form anion–π–π and anion–π–cation triads. The statistical analysis of the thousands of identified interactions reveals striking selectivities and subtle cooperativity effects among the anions, π-systems, and cations in a biological context. The reported results stress the importance of anion–π interactions and the cooperativity that arises from ternary contacts in key biological processes, such as protein folding and function and nucleic acids–protein and protein–protein recognition. We include examples of anion–π interactions and triads putatively involved in enzymatic catalysis, epigenetic gene regulation, antigen–antibody recognition, and protein dimerization.
Collapse
Affiliation(s)
- Xavier Lucas
- Pharmaceutical Bioinformatics , Institute of Pharmaceutical Sciences , Albert-Ludwigs-University , Hermann-Herder-Str. 9 , D-79104 Freiburg , Germany . ; ; Tel: +34 971173498
| | - Antonio Bauzá
- Departament de Química , Universitat de les Illes Balears , Crta. de Valldemossa km 7.5 , 07122 Palma de Mallorca , Spain .
| | - Antonio Frontera
- Departament de Química , Universitat de les Illes Balears , Crta. de Valldemossa km 7.5 , 07122 Palma de Mallorca , Spain .
| | - David Quiñonero
- Departament de Química , Universitat de les Illes Balears , Crta. de Valldemossa km 7.5 , 07122 Palma de Mallorca , Spain .
| |
Collapse
|
7
|
Sivasakthi V, Anbarasu A, Ramaiah S. π–π Interactions in Structural Stability: Role in RNA Binding Proteins. Cell Biochem Biophys 2013; 67:853-63. [DOI: 10.1007/s12013-013-9573-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Shanthi V, Sethumadhavan R. Electrostatic potential studies as a consequence of cation-π interaction in cytochrome c fold of alpha proteins. Interdiscip Sci 2012; 4:97-102. [PMID: 22843232 DOI: 10.1007/s12539-012-0120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 03/01/2011] [Accepted: 04/27/2011] [Indexed: 06/01/2023]
Abstract
Interactions between cationic and aromatic side chains of amino acid residues, the so-called cation-π interactions, are thought to contribute to the overall stability of the folded structure of peptides and proteins. We have analyzed the electrostatic behavior of residues involved in cation-π interactions for understanding the consequences of these non-covalent interactions. The average value of electrostatic potential for Arg and Lys were found to be positive which signifies their donor nature whereas Phe, Tyr and Trp showed negative values as they are acceptors. Similar trends were observed at the alpha carbon atom. We also observed that there is an opposite behavior of Lys as compared to Arg, Phe, Tyr and Trp towards electrostatic potential development on the last heavy atom. Furthermore the structural parameters like hydrophobicity and conservation score of interacting residues show that Lys to be acting totally different as compared to other residues and hence was found to be most influenced.
Collapse
Affiliation(s)
- V Shanthi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | |
Collapse
|
9
|
Blanco F, Kelly B, Alkorta I, Rozas I, Elguero J. Cation–π interactions: Complexes of guanidinium and simple aromatic systems. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Elumalai P, Rajasekaran M, Liu HL, Chen C. Investigation of cation-π interactions in sugar-binding proteins. PROTOPLASMA 2010; 247:13-24. [PMID: 20379838 DOI: 10.1007/s00709-010-0132-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/02/2010] [Indexed: 05/29/2023]
Abstract
Cation-π interaction is a non-covalent binding force that plays a significant role in protein stability and drug-receptor interactions. In this work, we have investigated the structural role of cation-π interactions in sugar-binding proteins (SBPs). We observed 212 cation-π interactions in 53 proteins out of 59 SBPs in dataset. There is an average one energetically significant cation-π interaction for every 66 residues in SBPs. In addition, Arg is highly preferred to form cation-π interactions, and the average energy of Arg-Trp is high among six pairs. Long-range interactions are predominant in the analyzed cation-π interactions. Comparatively, all interaction pairs favor to accommodate in strand conformations. The analysis of solvent accessible area indicates that most of the aromatic residues are found on buried or partially buried whereas cationic residues were found mostly on the exposed regions of protein. The cation-π interactions forming residues were found that around 43% of cation-π residues had highly conserved with the conservation score ≥6. Almost cationic and π-residues equally share in the stabilization center. Sugar-binding site analysis in available complexes showed that the frequency of Trp and Arg is high, suggesting the potential role of these two residues in the interactions between proteins and sugar molecules. Our observations in this study could help to further understand the structural stability of SBPs.
Collapse
Affiliation(s)
- Pavadai Elumalai
- Graduate Institute of Biotechnology, National Taipei University of Technology, 1 Sec. 3 ZhongXiao E. Rd., Taipei, Taiwan
| | | | | | | |
Collapse
|
11
|
Anbarasu A, Prasad VR, Sathpathy S, Sethumadhavan R. Influence of cation-pi interactions to the structural stability of prokaryotic and eukaryotic translation elongation factors. PROTOPLASMA 2009; 238:11-20. [PMID: 19653064 DOI: 10.1007/s00709-009-0066-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 07/15/2009] [Indexed: 05/28/2023]
Abstract
We have investigated the role of cation-pi interactions on translation elongation factors. In our investigation, an average of four significant cation-pi interactions were found, that is, an average of one cation-pi interaction per 44 residues in the ten elongation factors were observed. The analysis on the influence of short (< + or - 4), medium (> + or - 4 to < + or - 20) and long (>20) range contacts showed that cation-pi interactions are mainly formed by medium and long-range contacts. Arg-Tyr pair was found largest in number but energetic contribution of Arg-Trp pair was found most. Preferred secondary structural conformation analysis of the residues involved in cation-pi interaction indicates that the cationic Arg prefers to be in helix and Lys having equal probability for helix and strand, whereas the aromatic Phe and Trp were found mostly in helix while Tyr in strand regions. The cation-pi interaction residues involved in these proteins were found highly conserved with 48.86% residues having conservation score of > or = 6. Analysis of secondary structure preference of the energetically significant cation-pi residues in different solvent accessible range indicates that most of the pi residues are found buried or partially buried whereas cationic residues were found mostly at the protein surface. The results presented in this study will be useful for structural stability studies in translation elongation factors.
Collapse
Affiliation(s)
- Anand Anbarasu
- School of Biotechnology, Chemical Engineering and Biomedical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | | | | | | |
Collapse
|
12
|
Structural elements regulating amyloidogenesis: a cholinesterase model system. PLoS One 2008; 3:e1834. [PMID: 18350169 PMCID: PMC2265548 DOI: 10.1371/journal.pone.0001834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/19/2008] [Indexed: 11/30/2022] Open
Abstract
Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance. We investigated the forces involved in the amyloid assembly of a model peptide derived from the oligomerization domain of acetylcholinesterase (AChE), AChE586-599, through the effect of single point mutations on β-sheet propensity, conformation, fibrilization, surfactant activity, oligomerization and fibril morphology. AChE586-599 was chosen due to its fibrilization tractability and AChE involvement in Alzheimer's disease. The results revealed how specific regions and residues can control AChE586-599 assembly. Hydrophobic and/or aromatic residues were crucial for maintaining a high β-strand propensity, for the conformational transition to β-sheet, and for the first stage of aggregation. We also demonstrated that positively charged side-chains might be involved in electrostatic interactions, which could control the transition to β-sheet, the oligomerization and assembly stability. Further interactions were also found to participate in the assembly. We showed that some residues were important for AChE586-599 surfactant activity and that amyloid assembly might preferentially occur at an air-water interface. Consistently with the experimental observations and assembly models for other amyloid systems, we propose a model for AChE586-599 assembly in which a steric-zipper formed through specific interactions (hydrophobic, electrostatic, cation-π, SH-aromatic, metal chelation and polar-polar) would maintain the β-sheets together. We also propose that the stacking between the strands in the β-sheets along the fiber axis could be stabilized through π-π interactions and metal chelation. The dissection of the specific molecular recognition driving AChE586-599 amyloid assembly has provided further knowledge on such poorly understood and complicated process, which could be applied to protein folding and the targeting of amyloid diseases.
Collapse
|
13
|
Anbarasu A, Sethumadhavan R. Exploring the role of cation–π interactions in glycoproteins lipid-binding proteins and RNA-binding proteins. J Theor Biol 2007; 247:346-53. [PMID: 17451749 DOI: 10.1016/j.jtbi.2007.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/30/2007] [Accepted: 02/27/2007] [Indexed: 11/28/2022]
Abstract
We have analyzed and compared the influence of cation-pi interactions in glycoproteins (GPs), lipid-binding proteins (LBPs) and RNA-binding proteins (RBPs) in this study. We observed that all the proteins included in the study had profound cation-pi interactions. There is an average of one energetically significant cation-pi interaction for every 71 residues in GPs, for every 58 residues in LBPs and for every 64 residues in RBPs. Long-range contacts are predominant in all the three types of proteins studied. The pair-wise cation-pi interaction energy between the positively charged and aromatic residues shows that Arg-Trp pair energy was the strongest among all six possible pairs in all the three types of proteins studied. There were considerable differences in the preference of cation-pi interacting residues to different secondary structure elements and ASA and these might contribute to differences in biochemical functions of GPs, LBPs and RBPs. It was interesting to note that all the five residues involved in cation-pi interactions were found to have stabilization centers in GPs, LBPs and RBPs. Majority of the cation-pi interacting residues investigated in the present study had a conservation score of 6, the cutoff value used to identify the stabilizing residues. A small percentage of cation-pi interacting residues were also present as stabilizing residues. The cation-pi interaction-forming residues play an important role in the structural stability of in GPs, LBPs and RBPs. The results obtained in this study will be helpful in further understanding the stability, specificity and differences in the biochemical functions of GPs, LBPs and RBPs.
Collapse
Affiliation(s)
- Anand Anbarasu
- School of Bio-Technology Chemical and Bio-Medical Engineering, VIT University, Vellore 632014, India
| | | |
Collapse
|
14
|
Anbarasu A, Anand S, Mathew L, Sethumadhavan R. Influence of cation-π interactions on RNA-binding proteins. Int J Biol Macromol 2007; 40:479-83. [PMID: 17197018 DOI: 10.1016/j.ijbiomac.2006.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
The energy contribution due to cation-pi interactions has been computed for 37 RNA binding proteins. The contribution of these cation-pi interacting residues in sequential separation, secondary structure involvement, solvent accessibility, and stabilization centers has been evaluated. Sequential separation of the cation-pi involving residues show that, long range contacts predominates in all the proteins studied. Lys and Arg prefers to be in helical structures. Of the cation-pi interacting residues, Arg and Lys were in the exposed regions and the aromatic residues (Phe, Tyr and Trp) were in the buried and partially buried regions in the protein structures. Stabilization centers for these proteins showed that all the five residues found in cation-pi interactions are important in locating one or more of such centers. On the whole, the results presented in this work will be very useful for further investigations on the specificity and selectivity of RNA binding proteins and also for their structural studies.
Collapse
Affiliation(s)
- Anand Anbarasu
- School of Bio-Engineering and Biosciences, Vellore Institute of Technology, Vellore 632014, Tamil nadu, India
| | | | | | | |
Collapse
|