Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion.
Sci Rep 2015;
5:13858. [PMID:
26350049 PMCID:
PMC4563365 DOI:
10.1038/srep13858]
[Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 08/07/2015] [Indexed: 11/09/2022] Open
Abstract
Prevention of microbially induced corrosion (MIC) is of great significance in many environmental applications. Here, we report the use of an ultra-thin, graphene skin (Gr) as a superior anti-MIC coating over two commercial polymeric coatings, Parylene-C (PA) and Polyurethane (PU). We find that Nickel (Ni) dissolution in a corrosion cell with Gr-coated Ni is an order of magnitude lower than that of PA and PU coated electrodes. Electrochemical analysis reveals that the Gr coating offers ~10 and ~100 fold improvement in MIC resistance over PU and PA coatings respectively. This finding is remarkable considering that the Gr coating (1–2 nm) is ~25 and ~4000 times thinner than the PA (40–50 nm), and PU coatings (20–80 μm), respectively. Conventional polymer coatings are either non-conformal when deposited or degrade under the action of microbial processes, while the electro-chemically inert graphene coating is both resistant to microbial attack and is extremely conformal and defect-free. Finally, we provide a brief discussion regarding the effectiveness of as-grown vs. transferred graphene films for anti-MIC applications. While the as-grown graphene films are devoid of major defects, wet transfer of graphene is shown to introduce large scale defects that make it less suitable for the current application.
Collapse