1
|
Zhu B, Liu K, Luo L, Zhang Z, Xiao Y, Sun M, Jie S, Wang WJ, Hu J, Shi S, Wang Q, Li BG, Liu P. Covalent Organic Framework-Supported Metallocene for Ethylene Polymerization. Chemistry 2023; 29:e202300913. [PMID: 37341127 DOI: 10.1002/chem.202300913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
The loading of homogeneous catalysts with support can dramatically improve their performance in olefin polymerization. However, the challenge lies in the development of supported catalysts with well-defined pore structures and good compatibility to achieve high catalytic activity and product performance. Herein, we report the use of an emergent class of porous material-covalent organic framework material (COF) as a carrier to support metallocene catalyst-Cp2 ZrCl2 for ethylene polymerization. The COF-supported catalyst demonstrates a higher catalytic activity of 31.1×106 g mol-1 h-1 at 140 °C, compared with 11.2×106 g mol-1 h-1 for the homogenous one. The resulting polyethylene (PE) products possess higher weight-average molecular weight (Mw ) and narrower molecular weight distribution (Ð) after COF supporting, that is, Mw increases from 160 to 308 kDa and Ð drops from 3.3 to 2.2. The melting point (Tm ) is also increased by up to 5.2 °C. Moreover, the PE product possesses a characteristic filamentous microstructure and demonstrates an increased tensile strength from 19.0 to 30.7 MPa and elongation at break from 350 to 1400 % after catalyst loading. We believe that the use of COF carriers will facilitate the future development of supported catalysts for highly efficient olefin polymerization and high-performance polyolefins.
Collapse
Affiliation(s)
- Bangban Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kan Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liqiong Luo
- National-Certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd., Guangzhou, 510663, P. R. China
| | - Ziyang Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Yangke Xiao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minghao Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Suyun Jie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Jijiang Hu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shengbin Shi
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Qingyue Wang
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Pingwei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| |
Collapse
|
2
|
Lijun D, Jian Y, Jingdai W, Binbo J, Yongrong Y. Synthesis mechanisms of poly[styrene-co-(acrylic acid)]-supported TiCl4 catalysts modified by magnesium compounds. J Appl Polym Sci 2012. [DOI: 10.1002/app.34822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Heurtefeu B, Bouilhac C, Cloutet É, Taton D, Deffieux A, Cramail H. Polymer support of “single-site” catalysts for heterogeneous olefin polymerization. Prog Polym Sci 2011. [DOI: 10.1016/j.progpolymsci.2010.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Li W, Jiang B, Wang J, Yang Y. Organic/inorganic support for immobilizing (n-BuCp)2ZrCl2/TiCl3 hybrid catalyst for use in the preparation of polymer blends. POLYM INT 2010. [DOI: 10.1002/pi.3001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Hu H, Gao H, Song K, Liu F, Long J, Zhang L, Zhu F, Wu Q. Novel bis(benzoin) titanium catalyst for homo- and copolymerization of norbornene with ethylene: Synthesis, characterization and catalytic properties. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.08.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|