1
|
Mishra S, Ghosh A, Hansda B, Mondal TK, Biswas T, Das B, Roy D, Kumari P, Mondal S, Mandal B. Activation of Inert Supports for Enzyme(s) Immobilization Harnessing Biocatalytic Sustainability for Perennial Utilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18377-18406. [PMID: 39171729 DOI: 10.1021/acs.langmuir.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Although Nature's evolution and intelligence have gifted humankind with noteworthy enzyme candidates to simplify complex reactions with ultrafast, overselective, effortless, mild biological reactions for millions of years, their availability at minute-scale, short-range time-temperature stability, and purification costs hardly justify recycling/or reuse. Covalent immobilization, particularly via multipoint bonds, prevents denaturing, maintains activities for long-range time, pH, and temperature, and makes catalysts available for repetitive usages; which attracts researchers and industries to bring more immobilized enzyme contenders in science and commercial progressions. Inert-support activation, the most crucial step, needs appropriate activators; under mild conditions, the activator's functional group(s) still present on the activated support rapidly couples the enzyme, preventing unfolding and keeping the active site alive. This review summarizes exciting experimental advances, from the 1950s until today, in the activation strategies of various inert supports with five different surface activators, the cyanogen bromide, the isocyanate/isothiocyanate, the glutaraldehyde, the carbodiimide (with or without N-hydroxysuccinimide (NHS)), and the diazo group, for the immobilization of diverse enzymes for broader applications. These activators under mild pH (7.5 ± 0.5) and temperature (27 ± 3 °C) and ordinary stirring witnessed support activation and enzyme coupling and put off unfolding, harnessing addressable activities (CNBr: 40 ± 10%; -N═C═O/-N═C═S: 32 ± 7%; GA: 70 ± 15%; CDI: 60 ± 10%; -N+≡N: 80 ± 15%), while underprivileged stability, longevity, and reusabilities keep future investigations alive.
Collapse
Affiliation(s)
- Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal, India 700032
| | - Pallavi Kumari
- University Department of Chemistry, T.M.B.U., Bhagalpur, Bihar-812007, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| |
Collapse
|
2
|
Wang D, Hartz WF, Moloney MG. Surface modified materials for active capture of enzymes. J Mater Chem B 2023; 11:2377-2388. [PMID: 36794991 DOI: 10.1039/d2tb02550g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The insertion of bis(diarylcarbene)s onto a glass fiber (GF) membrane surface provided an active coating for the direct capture of protein - exemplified by the enzyme, cellulase - through a mild diazonium coupling process which does not require additional coupling agents. Successful cellulase attachment on the surface was demonstrated by the disappearance of diazonium and formation of azo functions in the N 1s high resolution spectra, the appearance of carboxyl group in C 1s spectra, both observed by XPS; the -CO vibrational bond observed by ATR-IR; as well as the observation of fluorescence. Further, five support materials (polystyrene XAD4 bead, polyacrylate MAC3 bead, glass wool, glass fiber membrane, polytetrafluoroethylene membrane) with different morphology and surface chemistry, were examined in detail as supports for cellulase immobilization using this common surface modification protocol. Of interest is that such covalently bound cellulase on modified GF membrane gave both the highest enzyme loading (∼23 mg cellulase per g support), and retained more than 90% of activity after 6 cycles of re-use, compared with substantial loss of enzyme activity for physiosorbed cellulase after 3 cycles. Optimization of the degree of surface grafting and the effectiveness of a spacer between surface and enzyme for enzyme loading and activity were conducted. This work shows that carbene surface modification is a viable strategy for introducing enzymes onto a surface under very mild conditions and retaining a meaningful level of activity, and particularly, using GF membrane as a novel support provides a potential platform for enzyme and protein immobilization.
Collapse
Affiliation(s)
- Dandan Wang
- Oxford Suzhou Centre for Advanced Research, Building A, 388 Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P. R. China.
| | - William F Hartz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Mark G Moloney
- Oxford Suzhou Centre for Advanced Research, Building A, 388 Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P. R. China. .,Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
3
|
Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization. Catalysts 2021. [DOI: 10.3390/catal11080936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During recent decades, the use of enzymes or chemoenzymatic cascades for organic chemistry has gained much importance in fundamental and industrial research. Moreover, several enzymatic and chemoenzymatic reactions have also served in green and sustainable manufacturing processes especially in fine chemicals, pharmaceutical, and flavor/fragrance industries. Unfortunately, only a few processes have been applied at industrial scale because of the low stabilities of enzymes along with the problematic processes of their recovery and reuse. Immobilization and co-immobilization offer an ideal solution to these problems. This review gives an overview of all the pathways for enzyme immobilization and their use in integrated enzymatic and chemoenzymatic processes in cascade or in a one-pot concomitant execution. We place emphasis on the factors that must be considered to understand the process of immobilization. A better understanding of this fundamental process is an essential tool not only in the choice of the best route of immobilization but also in the understanding of their catalytic activity.
Collapse
|
4
|
Tailor-made novel electrospun polystyrene/poly(d,l-lactide-co-glycolide) for oxidoreductases immobilization: Improvement of catalytic properties under extreme reaction conditions. Bioorg Chem 2021; 114:105036. [PMID: 34120021 DOI: 10.1016/j.bioorg.2021.105036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
Immobilized enzymes find applications in many areas such as pharmacy, medicine, food production and environmental protection. However, protecting these biocatalysts against harsh reaction conditions and retaining their enzymatic activity even after several biocatalytic cycles are major challenges. Properly selected supports and type of surface modifier therefore seem to be crucial for achieving high retention of catalytic activity of immobilized biomolecules. Here we propose production of novel composite electrospun fibers from polystyrene/poly(d,l-lactide-co-glycolide) (PS/PDLG) and its application as a support for immobilization of oxidoreductases such as alcohol dehydrogenase (ADH) and laccase (LAC). Two strategies of covalent binding, (i) (3-aminopropyl)triethoxysilane (APTES) with glutaraldehyde (GA) and (ii) polydopamine (PDA), were applied to attach oxidoreductases to PS/PDLG. The average fiber diameter was shown to increase from 1.252 µm to even 3.367 µm after enzyme immobilization. Effective production of PS/PDLG fibers and biomolecule attachment were confirmed by Fourier transform infrared spectroscopy analysis. The highest substrate conversion efficiency was observed at pH 6.5 and 5 for ADH and LAC, respectively, and at 25 °C for enzymes attached using the APTES + GA approach. Improvement of enzyme stabilization at high temperatures was confirmed in that relative activities of enzymes immobilized onto PS/PDLG fibers were over 20% higher than those of the free biomolecules, and enzyme leaching from the support using acetate and MES buffers was below 10 mg/g.
Collapse
|
5
|
Sharifi M, Robatjazi SM, Sadri M, Mosaabadi JM. Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Li S, Wang J, Tuo X, He Y. Hydrophilization of Polyurethane Foam Carriers in MBBR with Hyperbranched Polymeric Diazonium Salts. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Wang M, Xing J, Sun YT, Guo LX, Lin BP, Yang H. Thiol-ene photoimmobilization of chymotrypsin on polysiloxane gels for enzymatic peptide synthesis. RSC Adv 2018; 8:11843-11849. [PMID: 35539381 PMCID: PMC9079220 DOI: 10.1039/c7ra13320k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/14/2018] [Indexed: 11/21/2022] Open
Abstract
Chemical incorporation of enzymes onto polymeric materials has recently attracted intense scientific attention. Cross-linked polysiloxane gels as a typical super-hydrophobic support, are a good candidate for supporting enzymes in low-water organic medium to efficiently catalyze peptide synthesis because the hydrophobic polysiloxane matrix can prevent water from attacking the acyl-enzyme intermediate, which is beneficial for the shift in equilibrium to peptide formation. In this work, we develop a facile strategy to photoimmobilize olefin-functionalized chymotrypsin onto cross-linked polysiloxane gels via UV-initiated thiol-ene click chemistry. The impacts of water addition amount, heat-treatment and recyclability of the immobilized chymotrypsin influencing the peptide synthesis efficiency are investigated. Compared with the native chymotrypsin, polysiloxane-immobilized chymotrypsin showed advantageous catalytic activity, higher thermal stability and superior recyclability.
Collapse
Affiliation(s)
- Meng Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Jun Xing
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Yu-Tang Sun
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Ling-Xiang Guo
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Bao-Ping Lin
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| |
Collapse
|
8
|
Covalent immobilization of organophosphorus hydrolase enzyme on chemically modified cellulose microfibers: Statistical optimization and characterization. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Agrawal R, Verma A, Satlewal A. Application of nanoparticle-immobilized thermostable β-glucosidase for improving the sugarcane juice properties. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Yu B, Luo Y, Cong H, Gu C, Wang W, Tian C, Zhai J, Usman M. Preparation of crosslinked porous polyurea microspheres in one-step precipitation polymerization and its application for water treatment. RSC Adv 2016. [DOI: 10.1039/c6ra21013a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Porous polyurea microspheres (PPUMs) were simply prepared in one-step by the precipitation polymerization of isophorone diisocyanate with triethylenetetramine and SiO2 particles.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yongli Luo
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Chuantao Gu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Wenlin Wang
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Chao Tian
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Jiexiu Zhai
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Muhammad Usman
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
11
|
Berisha A, Chehimi M, Pinson J, Podvorica F. Electrode Surface Modification Using Diazonium Salts. ELECTROANALYTICAL CHEMISTRY: A SERIES OF ADVANCES 2015. [DOI: 10.1201/b19196-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Li SS, Han H, Zhu XL, Jiang XB, Kong XZ. Preparation and formation mechanism of porous polyurea by reaction of toluene diisocyanate with water and its application as adsorbent for anionic dye removal. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1670-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Wang J, Ji F, Xing J, Cui S, Bao Y, Hao W. Lipase Immobilization onto the Surface of PGMA-b-PDMAEMA-grafted Magnetic Nanoparticles Prepared via Atom Transfer Radical Polymerization. Chin J Chem Eng 2014. [DOI: 10.1016/j.cjche.2014.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Khoobi M, Motevalizadeh SF, Asadgol Z, Forootanfar H, Shafiee A, Faramarzi MA. Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Nylon 6 film and nanofiber carriers: Preparation and laccase immobilization performance. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Xiong Z, Gu T, Wang X. Self-assembled multilayer films of sulfonated graphene and polystyrene-based diazonium salt as photo-cross-linkable supercapacitor electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:522-532. [PMID: 24378006 DOI: 10.1021/la4037875] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photo-cross-linkable multilayer films composed of sulfonated reduced graphene oxide (SRGO) and polystyrene-based diazonium salt (PSDAS) were fabricated by electrostatic layer-by-layer (LbL) self-assembly. Polystyrene with narrow molecular weight distribution was synthesized by atom transfer radical polymerization (ATRP), and cationic PSDAS was prepared through nitration, reduction, and diazotization reactions. Negatively charged SRGO nanosheets were prepared through prereduced by NaBH4, modified by diazonium salt of sulfanilic acid, and then further reduced by hydrazine. The multilayer films were obtained by alternately dipping substrates in the PSDAS solution and SRGO dispersion in acidic conditions. The cross-linking between the components occurred during the multilayer formation process and was further achieved by the UV light irradiation after the film preparation. The assembling process and surface morphology of LbL multilayer films were monitored by UV-vis spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). The cross-linking between SRGO and PSDAS was verified by attenuated total reflectance FTIR (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle measurement. The graphene nanosheets were found to be homogeneously distributed in the cross-linked network of the films. The large accessible surface area of graphene nanosheets and the cross-linking structure afforded the LbL films with high specific capacitance and excellent cyclic stability when used as supercapacitor electrodes. At a sweeping rate of 10 mV/s, the film with nine bilayers exhibited a specific capacitance of 150.4 F/g with ideal rectangular cyclic voltammogram. Large capacitance retention of 97% was observed after 10 000 charge-discharge cycles under the scanning rate of 1000 mV/s. This new approach for preparing graphene-containing multilayer films can be used to develop supercapacitor electrodes and other functional devices.
Collapse
Affiliation(s)
- Zhiyuan Xiong
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University , Beijing 100084, P. R. China
| | | | | |
Collapse
|
17
|
Han H, Li S, Zhu X, Jiang X, Kong XZ. One step preparation of porous polyurea by reaction of toluene diisocyanate with water and its characterization. RSC Adv 2014. [DOI: 10.1039/c4ra06383j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Porous polyurea is synthesized by reacting toluene diisocyanate with water in a water–acetone binary solvent. Materials characterization led to the likely conformations of the polymer chains owing to presence of intensive H-bonding.
Collapse
Affiliation(s)
- Hui Han
- College of Chemistry and Chemical Engineering
- University of Jinan
- Jinan, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering
- University of Jinan
- Jinan, China
- College of Chemistry and Chemical Engineering
- Shandong University
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering
- University of Jinan
- Jinan, China
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering
- University of Jinan
- Jinan, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering
- University of Jinan
- Jinan, China
| |
Collapse
|
18
|
Lee L, Brooksby PA, Downard AJ. The stability of diazonium ion terminated films on glassy carbon and gold electrodes. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Barbosa EF, Silva LP. Qualitative and quantitative topographical surface investigation and solvent effects on internal surface of polypropylene tubes. SURF INTERFACE ANAL 2011. [DOI: 10.1002/sia.3812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Hirsh SL, Nosworthy NJ, Kondyurin A, dos Remedios CG, McKenzie DR, Bilek MMM. Linker-free covalent thermophilic β-glucosidase functionalized polymeric surfaces. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13376d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Bélanger D, Pinson J. Electrografting: a powerful method for surface modification. Chem Soc Rev 2011; 40:3995-4048. [DOI: 10.1039/c0cs00149j] [Citation(s) in RCA: 751] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Immobilization of monoamine oxidase on eggshell membrane and its application in designing an amperometric biosensor for dopamine. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0346-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Ye G, Li X, Wang X. Diffraction grating of hydrogel functionalized with glucose oxidase for glucose detection. Chem Commun (Camb) 2010; 46:3872-4. [DOI: 10.1039/c002429e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|