1
|
Ahmad A, Khan JM, Paray BA, Rashid K, Parvez A. Endolysosomal trapping of therapeutics and endosomal escape strategies. Drug Discov Today 2024; 29:104070. [PMID: 38942071 DOI: 10.1016/j.drudis.2024.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Internalizing therapeutic molecules or genes into cells and safely delivering them to the target tissue where they can perform the intended tasks is one of the key characteristics of the smart gene/drug delivery vector. Despite much research in this field, endosomal escape continues to be a significant obstacle to the development of effective gene/drug delivery systems. In this review, we discuss in depth the several types of endocytic pathways involved in the endolysosomal trapping of therapeutic agents. In addition, we describe numerous mechanisms involved in nanoparticle endosomal escape. Furthermore, many other techniques are employed to increase endosomal escape to minimize entrapment of therapeutic compounds within endolysosomes, which have been reviewed at length in this study.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Khalid Rashid
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ashib Parvez
- Department of Community Medicine, F.H. Medical College, Atal Bihari Vajpayee Medical University, Etmadpur, Agra, India
| |
Collapse
|
2
|
Zhou Y, Chen K, Lin WK, Liu J, Kang W, Zhang Y, Yang R, Jin L, Cheng Y, Xu A, Wang W. Photo-Enhanced Synergistic Induction of Ferroptosis for Anti-Cancer Immunotherapy. Adv Healthc Mater 2023; 12:e2300994. [PMID: 37432874 PMCID: PMC11468986 DOI: 10.1002/adhm.202300994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023]
Abstract
Ferroptosis as programmed cell death received considerable attention in cancer research. Recently, studies have associated ferroptosis with photodynamic therapy (PDT) because PDT promotes glutathione (GSH) deletion, glutathione peroxidase 4 (GPX4) degradation, and lipid peroxide accumulation. However, PDT-induced ferroptosis may be potentially prevented by ferroptosis suppressor protein 1 (FSP1). To address this limitation, herein, a novel strategy is developed to trigger ferroptosis by PDT and FSP1 inhibition. For enhancement of this strategy, a photoresponsive nanocomplex, self-assembled by BODIPY-modified poly(amidoamine) (BMP), is utilized to stably encapsulate the inhibitor of FSP1 (iFSP1) and chlorin e6 (Ce6). The nanosystem promotes intracellular delivery, penetration, and accumulation of ferroptosis inducers in tumors with light irradiation. The nanosystem presents high-performance triggering of ferroptosis and immunogenic cell death (ICD) in vitro and in vivo. Importantly, the nanoparticles increase tumor infiltration of CD8+ T cells and further enhance the efficacy of anti-PD-L1 immunotherapy. The study suggests the potential of photo-enhanced synergistic induction of ferroptosis by the photoresponsive nanocomplexes in cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Kang Chen
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
- Department of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Wing Kak Lin
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Jinzhao Liu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Weirong Kang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yaming Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai201203China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
3
|
Chen D, Zhang P, Li M, Li C, Lu X, Sun Y, Sun K. Hyaluronic acid-modified redox-sensitive hybrid nanocomplex loading with siRNA for non-small-cell lung carcinoma therapy. Drug Deliv 2022; 29:574-587. [PMID: 35156491 PMCID: PMC8856077 DOI: 10.1080/10717544.2022.2032874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A novel hyaluronic acid (HA)-modified hybrid nanocomplex HA-SeSe-COOH/siR-93C@PAMAM, which could efficiently deliver siRNA into tumor cells via a redox-mediated intracellular disassembly, was constructed for enhanced antitumor efficacy. Thereinto, siR-93C (siRNA) and positive PAMAM were firstly mixed into the electrostatic nano-intermediate, and then diselenide bond (-SeSe-)-modified HA was coved to shield excessive positive charges. This hybrid nanocomplex displayed uniform dynamic sizes, high stability, controlled zeta potential and narrow PDI distribution. Moreover, the -SeSe- linkage displayed GSH/ROS dual responsive properties, improving intracellular trafficking of siRNA. In vitro assays in A549 cell line presented that HA-SeSe-COOH/siR-93C@PAMAM has low cytotoxicity, rapid lysosomal escape and significant transfection efficiency; besides, an efficient proliferation inhibition ability and enhanced apoptosis. Furthermore, in animal studies, this negative-surfaced hybrid nanocomplex showed a prolonged circulation in blood and improved inhibition of tumor growth. All these results verified our hypothesis in this study that diselenide bonds-modified HA could promote not only stability and safety of nanoparticles in vivo but also intracellular behavior of siRNA via redox-dual sensitive properties; furthermore, this hybrid nanocomplex provided a visible potential approach for siRNA delivery in the antitumor field.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Minghui Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Congcong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Yiying Sun
- Shandong International Biotechnology Park Development Co. Ltd, Yantai, P.R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| |
Collapse
|
4
|
Zelcak A, Unal YC, Mese G, Bulmus V. A diaminoethane motif bearing low molecular weight polymer as a new nucleic acid delivery agent. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Liu X, Luo H, Niu L, Feng Y, Pan P, Yang J, Li M. Cleavable poly(ethylene glycol) branched chain-modified Antheraea pernyi silk fibroin as a gene delivery carrier. Nanomedicine (Lond) 2021; 16:839-853. [PMID: 33890489 DOI: 10.2217/nnm-2020-0481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To obtain a gene carrier that can effectively deliver loaded therapeutic genes to tumor cells, avoid toxic effects on normal cells and reduce nonspecific adsorption of plasma proteins. Methods: The conjugate of poly(ethylene glycol) (PEG) and MMP2SSP (PEG-MMP2SSP) was covalently coupled to cationized Antheraea pernyi silk fibroin (CASF) through disulfide bond exchange reaction to obtain a PEG-MMP2SSP-modified CASF (CASFMP). Results: The PEG chains were effectively cleaved from the CASFMP by MMP2. CASFMP/pDNA complexes inhibited human fibrosarcoma cell proliferation, and its cytotoxicity to human normal embryonic kidney cells was significantly lower than that of poly(ethylenimine)/pDNA after coculturing with cells for 24 h. Conclusion: CASFMP is a promising compound for use in gene therapy.
Collapse
Affiliation(s)
- Xueping Liu
- National Engineering Laboratory for Modern Silk, College of Textile & Clothing Engineering, Soochow University, Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Hong Luo
- National Engineering Laboratory for Modern Silk, College of Textile & Clothing Engineering, Soochow University, Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile & Clothing Engineering, Soochow University, Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Yanfei Feng
- National Engineering Laboratory for Modern Silk, College of Textile & Clothing Engineering, Soochow University, Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Peng Pan
- National Engineering Laboratory for Modern Silk, College of Textile & Clothing Engineering, Soochow University, Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Jicheng Yang
- Cell & Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile & Clothing Engineering, Soochow University, Industrial Park, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
6
|
Zhao RM, Guo Y, Yang HZ, Zhang J, Yu XQ. Zn-Promoted gene transfection efficiency for non-viral vectors: a mechanism study. NEW J CHEM 2021. [DOI: 10.1039/d1nj02115j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mechanism studies revealed that a Zn coordination to cyclen-based cationic polymer may effectively improve the buffering capacity and endosomal escape ability.
Collapse
Affiliation(s)
- Rui-Mo Zhao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yu Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Hui-Zhen Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
7
|
Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, Dolatabadi JEN, Hamblin MR. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. APPLIED MATERIALS TODAY 2018; 12:177-190. [PMID: 30511014 PMCID: PMC6269116 DOI: 10.1016/j.apmt.2018.05.002] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Drug delivery systems for cancer chemotherapy are employed to improve the effectiveness and decrease the side-effects of highly toxic drugs. Most chemotherapy agents have indiscriminate cytotoxicity that affects normal, as well as cancer cells. To overcome these problems, new more efficient nanosystems for drug delivery are increasingly being investigated. Polyamidoamine (PAMAM) dendrimers are an example of a versatile and reproducible type of nanocarrier that can be loaded with drugs, and modified by attaching target-specific ligands that recognize receptors that are over-expressed on cancer cells. PAMAM dendrimers with a high density of cationic charges display electrostatic interactions with nucleic acids (DNA, siRNA, miRNA, etc.), creating dendriplexes that can preserve the nucleic acids from degradation. Dendrimers are prepared by conducting several successive "generations" of synthetic reactions so their size can be easily controlled and they have good uniformity. Dendrimers are particularly well-suited to co-delivery applications (simultaneous delivery of drugs and/or genes). In the current review, we discuss dendrimer-based targeted delivery of drugs/genes and co-delivery systems mainly for cancer therapy.
Collapse
Affiliation(s)
- Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Ghaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Yekta
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Zhang M, Jing S, Zhang J, Zhang J, Zang X, Qiao M, Zhao X, Hu H, Chen D. Intracellular release of PluronicL64 unimers into MCF-7/ADR cells to overcome multidrug resistance by surface-modified PAMAM. J Mater Chem B 2017; 5:3970-3981. [PMID: 32264258 DOI: 10.1039/c7tb00659d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multidrug resistance (MDR) has been a major obstacle to tumor chemotherapy. Pluronic unimers have been reported to be promising copolymers to reverse MDR, and the intracellular delivery of Pluronic unimers is a problem worth thinking. To exert the excellent reversal effect of Pluronic unimers, DOX-loaded G4.0 PAMAM was modified with PluronicL64 via cis-aconitic acid as a pH-sensitive linkage (PCPAMAM/DOX), which could release DOX and Pluronic unimers into cytoplasm. The Pluronic-modified PAMAM (PCPAMAM) exhibited favorable biocompatibility and pH-sensitivity. PCPAMAM/DOX showed a nano-scale size and a sustained in vitro release profile. Compared with a control formulation, PCPAMAM/DOX showed a higher reversal effect on MCF-7/ADR cells and enhanced intracellular drug accumulation. The results of P-gp activity, subcellular distribution of PluronicL64, the ATP level and mitochondrial transmembrane potential all illustrated that free Pluronic unimers could be released by PCPAMAM functioning as reversal agents. In conclusion, PCPAMAM could be a promising vehicle to enhance DOX accumulation by overcoming MDR in MCF-7/ADR cells. This work also provided an effective method to deliver Pluronic unimers into MDR cells.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cervia LD, Chang CC, Wang L, Yuan F. Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection. PLoS One 2017; 12:e0171699. [PMID: 28182739 PMCID: PMC5300164 DOI: 10.1371/journal.pone.0171699] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/24/2017] [Indexed: 11/21/2022] Open
Abstract
A recent theory suggests that endocytosis is involved in uptake and intracellular transport of electrotransfected plasmid DNA (pDNA). The goal of the current study was to understand if approaches used previously to improve endocytosis of gene delivery vectors could be applied to enhancing electrotransfection efficiency (eTE). Results from the study showed that photochemically induced endosomal escape, which could increase poly-L-lysine (PLL)-mediated gene delivery, decreased eTE. The decrease could not be blocked by treatment of cells with endonuclease inhibitors (aurintricarboxylic acid and zinc ion) or antioxidants (L-glutamine and ascorbic acid). Chemical treatment of cells with an endosomal trafficking inhibitor that blocks endosome progression, bafilomycin A1, resulted in a significant decrease in eTE. However, treatment of cells with lysosomotropic agents (chloroquine and ammonium chloride) had little effects on eTE. These data suggested that endosomes played important roles in protecting and intracellular trafficking of electrotransfected pDNA.
Collapse
Affiliation(s)
- Lisa D. Cervia
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
10
|
Liu C, Jiang K, Tai L, Liu Y, Wei G, Lu W, Pan W. Facile Noninvasive Retinal Gene Delivery Enabled by Penetratin. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19256-67. [PMID: 27400087 DOI: 10.1021/acsami.6b04551] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gene delivery to the posterior segment of the eye is severely hindered by the impermeability of defensive barriers; therefore, in clinical settings, genomic medicines are mainly administered by intravitreal injection. We previously found that penetratin could transport the covalently conjugated fluorophore to the fundus oculi by topical instillation. In this study, gene delivery systems enabled by penetratin were designed based on electrostatic binding to target the retina via a noninvasive administration route and prepared with red fluorescent protein plasmid (pRFP) and/or poly(amidoamine) dendrimer of low molecular weight (G3 PAMAM). Formulation optimization, structure confirmation, and characterization were subsequently conducted. Penetratin alone showed limited ability to condense the plasmid but had powerful uptake and transfection by corneal and conjunctival cells. G3 PAMAM was nontoxic to the ocular cells, and when introduced into the penetratin-incorporated complex, the plasmid was condensed more compactly. Therefore, further improved cellular uptake and transfection were observed. After being instilled in the conjunctival sac of rats, the intact complexes penetrated rapidly from the ocular surface into the fundus and resided in the retina for more than 8 h, which resulted in efficient expression of RFP in the posterior segment. Intraocular distribution of the complexes suggested that the plasmids were absorbed into the eyes through a noncorneal pathway during which penetratin played a crucial role. This study provides a facile and friendly approach for intraocular gene delivery and is an important step toward the development of noninvasive gene therapy for posterior segment diseases.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Lingyu Tai
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China
| |
Collapse
|
11
|
Synthesis of PAMAM dendron functionalized superparamagnetic polymer microspheres for highly efficient sorption of uranium(VI). J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4735-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015; 115:5274-300. [DOI: 10.1021/cr500542t] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiepin Yang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Qiang Zhang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hong Chang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
13
|
Sabahi Z, Samani SM, Dehshahri A. Conjugation of poly(amidoamine) dendrimers with various acrylates for improved delivery of plasmid encoding interleukin-12 gene. J Biomater Appl 2014; 29:941-53. [DOI: 10.1177/0885328214551010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a small library of polyamidoamine (PAMAM) derivatives was prepared through the conjugation of its amines with various acrylates containing 5–21 carbon chain lengths at two different conjugation degrees, and the ability of the nano-sized PAMAM-based complexes to transfer the plasmid encoding interleukin-12 (IL-12) gene into the cells was studied. As the wide clinical application of the recombinant IL-12 protein has been limited due to several deaths reported following the systemic administration of the protein, local expression of the IL-12 gene inside the tumor target has been considered as an effective alternative strategy. The idea subjacent to this type of modification was to enhance transfection efficiency by the synergistic effects of endosome buffering via the PAMAM amines and the interaction with biological membranes caused by the hydrophobic moieties grafted on the PAMAM structure. Acrylate conjugation of primary amines on PAMAM structure enhanced transfection efficiency, with the highest level of IL-12 expression occurring with the conjugates containing five to nine carbon chains on their periphery at the grafting degree of 10%. The results obtained in this study suggest that combining the cationic nature of PAMAM along with modulating the hydrophobicity of the dendrimer to achieve an appropriate hydrophobic-hydrophilic balance yields the optimal carriers for non-viral gene delivery.
Collapse
Affiliation(s)
- Zahra Sabahi
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi Samani
- Department of Pharmaceutics, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Cai M, Zhang Z, Su X, Dong H, Zhong Z, Zhuo R. Guanidinated multi-arm star polyornithines with a polyethylenimine core for gene delivery. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Xu Z, Lai J, Tang R, Ji W, Wang R, Wang J, Wang C. Synthesis and Characterization of Homopolymers Bearing Acid-Cleavable Cationic Side-Chains for pH-Modulated Release of DNA. Macromol Biosci 2014; 14:1015-24. [DOI: 10.1002/mabi.201400004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/22/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Zhangyan Xu
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road Wuxi, Jiangsu Province 214122 P. R. China
| | - Junping Lai
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road Wuxi, Jiangsu Province 214122 P. R. China
| | - Rupei Tang
- School of Life Science; Anhui University; 111 Jiulong Road Hefei, Anhui Province 230601 P. R. China
| | - Weihang Ji
- Department of Biomedical Engineering; University of Minnesota; 7-105 Hasselmo Hall, 312 Church Street S. E. Minneapolis MN 55455 USA
| | - Rui Wang
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road Wuxi, Jiangsu Province 214122 P. R. China
| | - Jun Wang
- School of Life Science; Anhui University; 111 Jiulong Road Hefei, Anhui Province 230601 P. R. China
| | - Chun Wang
- Department of Biomedical Engineering; University of Minnesota; 7-105 Hasselmo Hall, 312 Church Street S. E. Minneapolis MN 55455 USA
| |
Collapse
|
16
|
Li T, Shao N, Liu Y, Hu J, Wang Y, Zhang L, Wang H, Chen D, Cheng Y. Poly(amidoamine) and Poly(propyleneimine) Dendrimers Show Distinct Binding Behaviors with Sodium Dodecyl Sulfate: Insights from SAXS and NMR Analysis. J Phys Chem B 2014; 118:3074-84. [DOI: 10.1021/jp412660p] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Tianfu Li
- China Institute
of Atomic Energy, Beijing 102413, People’s Republic of China
| | - Naimin Shao
- Key
Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Yuntao Liu
- China Institute
of Atomic Energy, Beijing 102413, People’s Republic of China
| | - Jingjing Hu
- Department
of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Yu Wang
- China Institute
of Atomic Energy, Beijing 102413, People’s Republic of China
| | - Li Zhang
- China Institute
of Atomic Energy, Beijing 102413, People’s Republic of China
| | - Hongli Wang
- China Institute
of Atomic Energy, Beijing 102413, People’s Republic of China
| | - Dongfeng Chen
- China Institute
of Atomic Energy, Beijing 102413, People’s Republic of China
| | - Yiyun Cheng
- Key
Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200062, People’s Republic of China
- Shanghai
Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, People’s Republic of China
| |
Collapse
|
17
|
Molecular simulation study of PAMAM dendrimer composite membranes. J Mol Model 2014; 20:2119. [DOI: 10.1007/s00894-014-2119-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/14/2013] [Indexed: 01/20/2023]
|
18
|
Gonçalves M, Maciel D, Capelo D, Xiao S, Sun W, Shi X, Rodrigues J, Tomás H, Li Y. Dendrimer-assisted formation of fluorescent nanogels for drug delivery and intracellular imaging. Biomacromolecules 2014; 15:492-9. [PMID: 24432789 DOI: 10.1021/bm401400r] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although, in general, nanogels present a good biocompatibility and are able to mimic biological tissues, their unstability and uncontrollable release properties still limit their biomedical applications. In this study, a simple approach was used to develop dual-cross-linked dendrimer/alginate nanogels (AG/G5), using CaCl2 as cross-linker and amine-terminated generation 5 dendrimer (G5) as a cocrosslinker, through an emulsion method. Via their strong electrostatic interactions with anionic AG, together with cross-linker Ca(2+), G5 dendrimers can be used to mediate the formation of more compact structural nanogels with smaller size (433 ± 17 nm) than that (873 ± 116 nm) of the Ca(2+)-cross-linked AG nanogels in the absence of G5. Under physiological (pH 7.4) and acidic (pH 5.5) conditions, the sizes of Ca(2+)-cross-linked AG nanogels gradually decrease probably because of their degradation, while dual-cross-linked AG/G5 nanogels maintain a relatively more stable structure. Furthermore, the AG/G5 nanogels effectively encapsulate the anticancer drug doxorubicin (Dox) with a loading capacity 3 times higher than that of AG nanogels. The AG/G5 nanogels were able to release Dox in a sustained way, avoiding the burst release observed for AG nanogels. In vitro studies show that the AG/G5-Dox NGs were effectively taken up by CAL-72 cells (a human osteosarcoma cell line) and maintain the anticancer cytotoxicity levels of free Dox. Interestingly, G5 labeled with a fluorescent marker can be integrated into the nanogels and be used to track the nanogels inside cells by fluorescence microscopy. These findings demonstrate that AG/G5 nanogels may serve as a general platform for therapeutic delivery and/or cell imaging.
Collapse
Affiliation(s)
- Mara Gonçalves
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Direct TLC/MALDI–MS coupling for modified polyamidoamine dendrimers analyses. Anal Chim Acta 2014; 808:144-50. [DOI: 10.1016/j.aca.2013.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 02/04/2023]
|
20
|
Wang M, Hu H, Sun Y, Qiu L, Zhang J, Guan G, Zhao X, Qiao M, Cheng L, Cheng L, Chen D. A pH-sensitive gene delivery system based on folic acid-PEG-chitosan – PAMAM-plasmid DNA complexes for cancer cell targeting. Biomaterials 2013; 34:10120-32. [DOI: 10.1016/j.biomaterials.2013.09.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/02/2013] [Indexed: 01/08/2023]
|
21
|
Jin L, Tan Y, Shangguan Y, Lin Y, Xu B, Wu Q, Zheng Q. Multiregion Shear Thinning for Subsequent Static Self-Thickening in Chitosan-graft-polyacrylamide Aqueous Solution. J Phys Chem B 2013; 117:15111-21. [DOI: 10.1021/jp408782e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Jin
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yeqiang Tan
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yonggang Shangguan
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Lin
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bo Xu
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Qiang Wu
- College
of Engineering, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Qiang Zheng
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
22
|
Gattás-Asfura KM, Stabler CL. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9964-74. [PMID: 24063764 PMCID: PMC3856945 DOI: 10.1021/am401981g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over the capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with a phosphine-functionalized poly(amidoamine) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized, ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs.
Collapse
Affiliation(s)
- Kerim M Gattás-Asfura
- Diabetes Research Institute, University of Miami , Miami, Florida 33136 United States
| | | |
Collapse
|
23
|
Cao D, Qin L, Huang H, Feng M, Pan S, Chen J. Transfection activity and the mechanism of pDNA-complexes based on the hybrid of low-generation PAMAM and branched PEI-1.8k. MOLECULAR BIOSYSTEMS 2013; 9:3175-86. [PMID: 24126459 DOI: 10.1039/c3mb70261h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cationic polymers have been regarded as promising non-viral gene carriers because of their advantages over viral gene vectors, such as low cost, a high level of safety and easy manipulation. However, their poor transfection efficiency in the presence of serum and high toxicity are still limiting issues for clinical applications. In addition, the lack of adequate understanding of the gene delivery mechanism hinders their development to some extent. In this study, new polycations (PAPEs) consisting of a low generation polyamidoamine (PAMAM) core and branched polyethyleneimine (PEI-1.8k) outer layers were synthesized and their transfection activity and mechanism were studied. PAPEs were characterized by FTIR, (1)H NMR and gel permeation chromatography. PAPEs were able to self-assemble with pDNA and form spherical nanoparticles with sizes of 70-204 nm and zeta potentials of 13-33 mV. Importantly, the PAPE-pDNA complexes displayed lower cytotoxicity and higher transfection activity than PEI 25k in various cell lines, specifically in the presence of serum. The transfection mechanism was evaluated by endocytosis inhibition with specific inhibitors, time-dependent transfection, and intracellular trafficking inspection by CLSM. The high levels of transgene expression mediated by PAPEs were attributed to caveolae-mediated cellular uptake, the reduced entry into lysosomes and the entry into the nucleus through mitosis.
Collapse
Affiliation(s)
- Duanwen Cao
- Department of Pharmaceutical Science, Nanfang Hospital, Southern Medical University, Guangzhou 510515, and Cardiovascular Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | |
Collapse
|
24
|
Dehshahri A, Alhashemi SH, Jamshidzadeh A, Sabahi Z, Samani SM, Sadeghpour H, Mohazabieh E, Fadaei M. Comparison of the effectiveness of polyethylenimine, polyamidoamine and chitosan in transferring plasmid encoding interleukin-12 gene into hepatocytes. Macromol Res 2013. [DOI: 10.1007/s13233-013-1180-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Pan S, Cao D, Yi W, Huang H, Feng M. A biodegradable and serum-resistant gene delivery carrier composed of polyamidoamine–poly N,N′-di-(2-aminoethyl) aminoethyl glutamine copolymer. Colloids Surf B Biointerfaces 2013; 104:294-302. [DOI: 10.1016/j.colsurfb.2012.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/12/2012] [Accepted: 12/12/2012] [Indexed: 01/07/2023]
|
26
|
Nazarpoor Z, Khivantsev K, Kyriakidou E, Kubicki C, Ma S, Fanson PT, Alexeev OS, Amiridis MD. Dendrimer-mediated synthesis of supported rhodium nanoparticles with controlled size: effect of pH and dialysis. J Colloid Interface Sci 2013; 398:22-32. [PMID: 23499295 DOI: 10.1016/j.jcis.2013.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/18/2013] [Accepted: 02/04/2013] [Indexed: 12/31/2022]
Abstract
Rh-dendrimer nanocomposites were synthesized in solution under different conditions and were subsequently used as precursors for the preparation of ZrO2-supported Rh nanoparticles. Elemental analysis, UV-vis, XPS, and STEM measurements were used to estimate the extent of the Rh-dendrimer interactions and to illustrate how the solution pH and dialysis affect the number of Rh atoms complexed with each dendrimer molecule, as well as the final size of the ZrO2-supported Rh particles. When the solution acidity was not controlled and the solution was not purified by dialysis, Rh particles with sizes in the 1-6 nm range were formed on the ZrO2 support. In contrast, the formation of nearly uniform Rh particles was observed when the synthesis was performed under controlled pH and dialysis conditions. Furthermore, the size of these Rh particles can be regulated by controlling the Rh/dendrimer ratio in the original solution.
Collapse
Affiliation(s)
- Zahra Nazarpoor
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pan S, Cao D, Huang H, Yi W, Qin L, Feng M. A Serum-Resistant Low-Generation Polyamidoamine with PEI 423 Outer Layer for Gene Delivery Vector. Macromol Biosci 2013; 13:422-36. [PMID: 23381904 DOI: 10.1002/mabi.201200255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/15/2012] [Indexed: 12/24/2022]
Abstract
A new derivative of polyamidoamine and polyethylenimine, G2.5-PEI 423 or G1.5-PEI 423, is prepared by an amidation reaction of PAMAM G2.5 or PAMAM G1.5 using PEI 423. The polycations show a great ability to combine with pDNA to form complexes, which protect the pDNA from nuclease degradation. The polymers display stronger buffer capacity and lower cytotoxicity. The complexes have particle sizes of 120-180 nm and zeta potentials of 20-40 mV. The G2.5-PEI 423 complexes display much higher transfection efficiencies than PAMAM G5 and Lipo-2k, and the G1.5-PEI 423 complexes display higher transfection efficiencies than PAMAM G4 and PEI-25k. The complexes possess better serum-resistant capacity. The G2.5-PEI 423 has a great potential to be used as a serum-resistant gene vector.
Collapse
Affiliation(s)
- Shirong Pan
- The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou 510080, P. R. China.
| | | | | | | | | | | |
Collapse
|
28
|
Jeong Y, Park J, Jin GW, Park JS. Elevation of Transfection Efficiency by Conjugation of Poly(amindoamine)-diethylenetriamine (PAM-DET) with Dexamethasone. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.11.3849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
You J, Li G, Wang Z. Synthesis of pyrene-cored dendrimers with 9-phenylcarbazole-based dendrons and their thermal, photophysical and electrochemical properties. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.08.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Lin Y, Sun J. Vinyl-terminated liquid-crystalline dendrimers based on dendritic polyols and their siloxane-based elastomers. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Freeman EC, Weiland LM, Meng WS. Modeling the proton sponge hypothesis: examining proton sponge effectiveness for enhancing intracellular gene delivery through multiscale modeling. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2012; 24:398-416. [PMID: 23565683 PMCID: PMC3623018 DOI: 10.1080/09205063.2012.690282] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Dendrimers have been proposed as therapeutic gene delivery platforms. Their superior transfection efficiency is attributed to their ability to buffer the acidification of the endosome and attach to the nucleic acids. For effective transfection, the strategy is to synthesize novel dendrimers that optimize both of these traits, but the prediction of the buffering behavior in the endosome remains elusive. It is suggested that buffering dendrimers induce an osmotic pressure sufficient to rupture the endosome and release nucleic acids, which forms to sequestrate most internalized exogenous materials. Presented here are the results of a computational study modeling osmotically driven endosome burst or the 'proton sponge effect.' The approach builds on previous cellular simulation efforts by linking the previous model with a sponge protonation model, then observing the impact on endosomal swelling and acidification. Calibrated and validated using reported experimental data, the simulations offer insights into defining the properties of suitable dendrimers for enhancing gene delivery as a function of polymer structure.
Collapse
Affiliation(s)
- Eric C Freeman
- Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
32
|
Effect of deoxycholate conjugation on stability of pDNA/polyamidoamine-diethylentriamine (PAM-DET) polyplex against ionic strength. Int J Pharm 2011; 420:366-70. [PMID: 21907775 DOI: 10.1016/j.ijpharm.2011.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/19/2011] [Accepted: 08/29/2011] [Indexed: 11/23/2022]
Abstract
Polyplexes formed from cationic polymer/pDNA have been known to be vulnerable to external ionic strength. To improve polyplex stability against ionic strength, we attempted the chemical conjugation of the hydrophobic deoxycholate (DC) moiety to the polyamidoamine-diethylenetriamine (PAM-DET) dendrimer. Dynamic light scattering studies showed that the tolerance of the resulting PAM-DET-DC against ionic strength is higher than that of PAM-DET. In addition, we confirmed that the stability of polyplex has a strong relationship with the degree of conjugation of the DC moiety to the PAM-DET dendrimer and the charge ratio of PAM-DET-DC. Furthermore, the transfection efficiency of the PAM-DET-DC polyplex is higher than that of PAM-DET but its cytotoxicity remains the same. Therefore, the chemical conjugation of DC is a safe and effective method for increasing the stability of supramolecules formed from electrostatic interaction.
Collapse
|