1
|
Xu Y, Wang S, Liu H, Li X. Microencapsulated Perovskite Crystals via In Situ Permeation Growth from Polymer Microencapsulation-Expansion-Contraction Strategy: Advancing a Record Long-Term Stability beyond 10 000 h for Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313080. [PMID: 38242543 DOI: 10.1002/adma.202313080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability are predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation-expansion-contraction strategy is proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4-acryloylmorpholine) (poly(4-AcM)) network on PbI2 surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 µm and reduced trap density from 1.12 × 1016 to 2.56 × 1015 cm-3. Moreover, profiting from the protection of poly(4-AcM) microencapsulation layer, the degradation of the perovskite is markedly suppressed. Resultant PSCs gain a robust power conversion efficiency (PCE) of 24.04%. Typically, they maintain 91% of their initial PCE for 13 008 h in a desiccated ambient environment and retain 92% PCE after storage for 4000 h with a relative humidity of 50 ± 10%, which is the state-of-the-art long-term stability among the reported contributions.
Collapse
Affiliation(s)
- Yibo Xu
- Tianjin University, School of Chemical Engineering and Technology, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shirong Wang
- Tianjin University, School of Chemical Engineering and Technology, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Hongli Liu
- Tianjin University, School of Chemical Engineering and Technology, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xianggao Li
- Tianjin University, School of Chemical Engineering and Technology, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
2
|
Abbas Z, Wang D, Lu L, Li Y, Pu C, Chen X, Xu P, Liang S, Kong L, Tang B. Computational Study of Drop-on-Demand Coaxial Electrohydrodynamic Jet and Printing Microdroplets. MICROMACHINES 2023; 14:812. [PMCID: PMC10142017 DOI: 10.3390/mi14040812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 06/01/2023]
Abstract
Currently, coaxial electrohydrodynamic jet (CE-Jet) printing is used as a promising technique for the alternative fabrication of drop-on-demand micro- and nanoscale structures without using a template. Therefore, this paper presents numerical simulation of the DoD CE-Jet process based on a phase field model. Titanium lead zirconate (PZT) and silicone oil were used to verify the numerical simulation and the experiments. The optimized working parameters (i.e., inner liquid flow velocity 150 m/s, pulse voltage 8.0 kV, external fluid velocity 250 m/s, print height 16 cm) were used to control the stability of the CE-Jet, avoiding the bulging effect during experimental study. Consequently, different sized microdroplets with a minimum diameter of ~5.5 µm were directly printed after the removal of the outer solution. The model is considered the easiest to implement and is powerful for the application of flexible printed electronics in advanced manufacturing technology.
Collapse
Affiliation(s)
- Zeshan Abbas
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; (Z.A.); (L.L.); (Y.L.); (C.P.); (X.C.); (P.X.)
| | - Dazhi Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; (Z.A.); (L.L.); (Y.L.); (C.P.); (X.C.); (P.X.)
- Ningbo Institute of Dalian University of Technology, Ningbo 315000, China; (S.L.); (L.K.)
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| | - Liangkun Lu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; (Z.A.); (L.L.); (Y.L.); (C.P.); (X.C.); (P.X.)
| | - Yikang Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; (Z.A.); (L.L.); (Y.L.); (C.P.); (X.C.); (P.X.)
| | - Changchang Pu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; (Z.A.); (L.L.); (Y.L.); (C.P.); (X.C.); (P.X.)
| | - Xiangji Chen
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; (Z.A.); (L.L.); (Y.L.); (C.P.); (X.C.); (P.X.)
| | - Pengfei Xu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; (Z.A.); (L.L.); (Y.L.); (C.P.); (X.C.); (P.X.)
| | - Shiwen Liang
- Ningbo Institute of Dalian University of Technology, Ningbo 315000, China; (S.L.); (L.K.)
| | - Lingjie Kong
- Ningbo Institute of Dalian University of Technology, Ningbo 315000, China; (S.L.); (L.K.)
| | - Bin Tang
- Institute of Electronic Engineering, CAEP, Mianyang 621900, China;
| |
Collapse
|
3
|
Electrospun Fibers: Versatile Approaches for Controlled Release Applications. INT J POLYM SCI 2022. [DOI: 10.1155/2022/9116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrospinning has been one of the most attractive methods of fiber fabrication in the last century. A lot of studies have been conducted, especially in tissue engineering and drug delivery using electrospun fibers. Loading many different drugs and bioactive agents on or within these fibers potentiates the efficacy of such systems; however, there are still no commercial products with this technology available in the market. Various methods have been developed to improve the mechanical and physicochemical behavior of structures toward more controllable delivery systems in terms of time, place, or quantity of release. In this study, most frequent methods used for the fabrication of controlled release electrospun fibers have been reviewed. Although there are a lot of achievements in the fabrication of controlled release fibers, there are still many challenges to be solved to reach a qualified, reproducible system applicable in the pharmaceutical industry.
Collapse
|
4
|
Jeong JH, Park K, Kim H, Park I, Choi J, Lee SS. Multiplexed electrospraying of water in cone-jet mode using a UV-embossed pyramidal micronozzle film. MICROSYSTEMS & NANOENGINEERING 2022; 8:110. [PMID: 36187890 PMCID: PMC9522652 DOI: 10.1038/s41378-022-00391-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
The electrospraying of water in the cone-jet mode is difficult in practical applications owing to its low throughput and the electrical discharge caused by the high surface tension of water. A film with multiple dielectric micronozzles is essential for multiplexed electrospraying of water in cone-jet mode without electrical discharge. Thus, a pyramidal micronozzle film with five nozzles was fabricated using the UV-embossing process. The pyramidal micronozzle film consisted of pyramidal micronozzles, a micropillar array, and an in-plane extractor, which were proposed to minimize wetting and concentrate the electric field to the water meniscus at the tip of the pyramidal micronozzle. The electrospraying of water using a single pyramidal micronozzle was visualized by a high-speed camera at a flow rate of 0.15-0.50 ml/h with voltages of 0.0-2.3 kV, -1.6 kV, and -4.0 kV at the water, guide ring, and collector, respectively. Three distinct modes, the dripping, spindle, and cone-jet modes, were observed and distinguished according to the motion of the water meniscus at the nozzle tip. The steady Taylor cone and jet were observed in a voltage range of 1.3-2.0 kV in water, particularly in cone-jet mode. Multiplexed electrospraying of water in cone-jet mode at a flow rate of 1.5 ml/h was performed using a pyramidal micronozzle film, demonstrating the potential for a high-throughput electrospraying system.
Collapse
Affiliation(s)
- Ji-hun Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea
| | - Kwangseok Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea
| | - Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea
| | - Inyong Park
- Department of Environmental Machinery, Korea Institute of Machinery and Materials, Daejeon, 34103 Republic of Korea
| | - Jinyoung Choi
- Department of Mechanical Engineering, Dongshin University, Naju, 58245 Republic of Korea
| | - Seung S. Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea
| |
Collapse
|
5
|
Jafari DA, Baspinar Y, Ustundas M, Bayraktar O, Kara HG, Sezgin C. Cytotoxicity and Gene Expression Studies of Curcumin and Piperine Loaded Nanoparticles on Breast Cancer Cells. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Muldoon K, Song Y, Ahmad Z, Chen X, Chang MW. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. MICROMACHINES 2022; 13:642. [PMID: 35457946 PMCID: PMC9033068 DOI: 10.3390/mi13040642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Collapse
Affiliation(s)
- Kirsty Muldoon
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| | - Yanhua Song
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| |
Collapse
|
7
|
Ali A, Zaman A, Sayed E, Evans D, Morgan S, Samwell C, Hall J, Arshad MS, Singh N, Qutachi O, Chang MW, Ahmad Z. Electrohydrodynamic atomisation driven design and engineering of opportunistic particulate systems for applications in drug delivery, therapeutics and pharmaceutics. Adv Drug Deliv Rev 2021; 176:113788. [PMID: 33957180 DOI: 10.1016/j.addr.2021.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Electrohydrodynamic atomisation (EHDA) technologies have evolved significantly over the past decade; branching into several established and emerging healthcare remits through timely advances in the engineering sciences and tailored conceptual process designs. More specifically for pharmaceutical and drug delivery spheres, electrospraying (ES) has presented itself as a high value technique enabling a plethora of different particulate structures. However, when coupled with novel formulations (e.g. co-flows) and innovative device aspects (e.g., materials and dimensions), core characteristics of particulates are manipulated and engineered specifically to deliver an application driven need, which is currently lacking, ranging from imaging and targeted delivery to controlled release and sensing. This demonstrates the holistic nature of these emerging technologies; which is often overlooked. Parametric driven control during particle engineering via the ES method yields opportunistic properties when compared to conventional methods, albeit at ambient conditions (e.g., temperature and pressure), making this extremely valuable for sensitive biologics and molecules of interest. Furthermore, several processing (e.g., flow rate, applied voltage and working distance) and solution (e.g., polymer concentration, electrical conductivity and surface tension) parameters impact ES modes and greatly influence the production of resulting particles. The formation of a steady cone-jet and subsequent atomisation during ES fabricates particles demonstrating monodispersity (or near monodispersed), narrow particle size distributions and smooth or textured morphologies; all of which are successfully incorporated in a one-step process. By following a controlled ES regime, tailored particles with various intricate structures (hollow microspheres, nanocups, Janus and cell-mimicking nanoparticles) can also be engineered through process head modifications central to the ES technique (single-needle spraying, coaxial, multi-needle and needleless approaches). Thus, intricate formulation design, set-up and combinatorial engineering of the EHDA process delivers particulate structures with a multitude of applications in tissue engineering, theranostics, bioresponsive systems as well as drug dosage forms for specific delivery to diseased or target tissues. This advanced technology has great potential to be implemented commercially, particularly on the industrial scale for several unmet pharmaceutical and medical challenges and needs. This review focuses on key seminal developments, ending with future perspectives addressing obstacles that need to be addressed for future advancement.
Collapse
|
8
|
Tycova A, Prikryl J, Kotzianova A, Datinska V, Velebny V, Foret F. Electrospray: More than just an ionization source. Electrophoresis 2020; 42:103-121. [PMID: 32841405 DOI: 10.1002/elps.202000191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
Abstract
Electrospraying (ES) is a potential-driven process of liquid atomization, which is employed in the field of analytical chemistry, particularly as an ionization technique for mass spectrometric analyses of biomolecules. In this review, we demonstrate the extraordinary versatility of the electrospray by overviewing the specifics and advanced applications of ES-based processing of low molecular mass compounds, biomolecules, polymers, nanoparticles, and cells. Thus, under suitable experimental conditions, ES can be used as a powerful tool for highly controlled deposition of homogeneous films or various patterns, which may sometimes even be organized into 3D structures. We also emphasize its capacity to produce composite materials including encapsulation systems and polymeric fibers. Further, we present several other, less common ES-based applications. This review provides an insight into the remarkable potential of ES, which can be very useful in the designing of innovative and unique strategies.
Collapse
Affiliation(s)
- Anna Tycova
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Jan Prikryl
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Adela Kotzianova
- R&D Department, Contipro a.s., Dolni Dobrouc, 561 02, Czech Republic
| | - Vladimira Datinska
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Vladimir Velebny
- R&D Department, Contipro a.s., Dolni Dobrouc, 561 02, Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| |
Collapse
|
9
|
Yao ZC, Zhang C, Ahmad Z, Peng Y, Chang MW. Microparticle Formation via Tri-needle Coaxial Electrospray at Stable Jetting Modes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhi-Cheng Yao
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, PR China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, PR China
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, PR China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, PR China
| | - Zeeshan Ahmad
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K
| | - Yu Peng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, PR China
| | - Ming-Wei Chang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, PR China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, PR China
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, Northern Ireland, UK
| |
Collapse
|
10
|
Wen A, Mei X, Feng C, Shen C, Wang B, Zhang X. Electrosprayed nanoparticles of poly(p-dioxanone-co-melphalan) macromolecular prodrugs for treatment of xenograft ovarian carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110759. [PMID: 32279799 DOI: 10.1016/j.msec.2020.110759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 01/18/2023]
Abstract
Ovarian cancer is considered to be the most fatal reproductive cancers. Melphalan is used to treat ovarian cancer as an intraperitoneal chemotherapy agent. However, elucidating its pharmacokinetic behavior and preparing it for administration are challenging since it undergoes spontaneous hydrolysis. In this study, melphalan is transformed into a macromolecular prodrug by copolymerizing with p-dioxanone. The hydrophobicity of copolymer chains protects melphalan from hydrolysis. Poly(p-dioxanone-co-melphalan; PDCM) is electrosprayed and converted into nanoparticles (PDCM NPs) with diameters of ~300-350 nm to facilitate its intracellular delivery. UPLC-MS and HPLC are applied to verify and monitor the release of melphalan from PDCM NPs. PDCM NPs could suppress the proliferation of SKOV-3 cells. The IC50 of 4.3% melphalan-containing PDCM-3 NP was 70 mg/L, 72 h post administration. These suppression characteristics not only affected by the degradation and then the extracellular release of melphalan from PDCM NPs, but also the uptake via phagocytosis phenomenon in SKOV-3 cells. As revealed by flow cytometry, phagocytosis is a first-order process. Once phagocytosed, PDCM NPs are digested by lysosomes, causing a rapid release of melphalan into the cytoplasm, which ultimately causes suppression of SKOV-3 cell proliferation. Finally, the in vivo antitumor effects of PDCM NPs are verified in xenograft ovarian carcinoma. After a 20-day treatment, the tumor growth rate of the PDCM-3 NP group was (266 ± 178%) which was lower than those in the free melphalan group (367 ± 150%) and control group (648 ± 149%). Besides, significant tissue necrosis and growth suppression were observed in animals administered injections of PDCM NPs. Furthermore, the in vivo tracing results of Nile red-labeled PDCM NPs demonstrated that PDCM-3 NPs might be phagocytosed by macrophages and then taken to adjacent lymph nodes, which is a way of prevention or early treatment of lymphatic metastasis of tumors.
Collapse
Affiliation(s)
- Aiping Wen
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Mei
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Chengmin Feng
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging & Institute of Morphological Research, North Sichuan Medical College, Nanchong, China
| | - Bing Wang
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging & Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
11
|
Cam ME, Zhang Y, Edirisinghe M. Electrosprayed microparticles: a novel drug delivery method. Expert Opin Drug Deliv 2019; 16:895-901. [DOI: 10.1080/17425247.2019.1648427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Muhammet Emin Cam
- Department of Mechanical Engineering, University College London, London, UK
- Centre for Nanotechnology and Biomaterials Research, Marmara University, Istanbul, Turkey
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Yue Zhang
- Department of Mechanical Engineering, University College London, London, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
12
|
Han D, Steckl AJ. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem 2019; 84:1453-1497. [PMID: 31943926 DOI: 10.1002/cplu.201900281] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Indexed: 12/12/2022]
Abstract
The formation of fibers by electrospinning has experienced explosive growth in the past decade, recently reaching 4,000 publications and 1,500 patents per year. This impressive growth of interest is due to the ability to form fibers with a variety of materials, which lend themselves to a large and rapidly expanding set of applications. In particular, coaxial electrospinning, which forms fibers with multiple core-sheath layers from different materials in a single step, enables the combination of properties in a single fiber that are not found in nature in a single material. This article is a detailed review of coaxial electrospinning: basic mechanisms, early history and current status, and an in-depth discussion of various applications (biomedical, environmental, sensors, energy, catalysis, textiles). We aim to provide readers who are currently involved in certain aspects of coaxial electrospinning research an appreciation of other applications and of current results.
Collapse
Affiliation(s)
- Daewoo Han
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| | - Andrew J Steckl
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| |
Collapse
|
13
|
Zhang C, Li Y, Hu Y, Peng Y, Ahmad Z, Li JS, Chang MW. Porous Yolk-Shell Particle Engineering via Nonsolvent-Assisted Trineedle Coaxial Electrospraying for Burn-Related Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7823-7835. [PMID: 30730130 DOI: 10.1021/acsami.8b22112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yolk-shell particles (YSPs) have attracted increasing attention from various research fields because of their low density, large surface area, and excellent loading capacity. However, the fabrication of polymer-based porous YSPs remains a great challenge. In this work, multifunctional polycaprolactone YSPs were produced using trineedle coaxial electrospraying with a simple nonsolvent process. TiO2-Ag nanoparticles and Ganoderma lucidum polysaccharides (GLPs) were encapsulated into the outer shell of the YSPs as the major antibacterial and antioxidant components, whereas iron oxide (Fe3O4) nanoparticles were incorporated into the inner core to act as a photothermal agent. The morphology and structure, chemical composition, biocompatibility, antioxidant, and antibacterial effects of the fabricated YSPs, photothermal effects, and the release profile of the encapsulated GLP were studied in vitro. Furthermore, the in vivo wound healing effects of the YSPs and the laser-assisted therapy were explored based on a burn wound model on c57 mice.
Collapse
Affiliation(s)
| | | | | | | | - Zeeshan Ahmad
- Leicester School of Pharmacy , De Montfort University , The Gateway, Leicester LE1 9BH , U.K
| | | | | |
Collapse
|
14
|
Chen C, Liu W, Jiang P, Hong T. Coaxial Electrohydrodynamic Atomization for the Production of Drug-Loaded Micro/Nanoparticles. MICROMACHINES 2019; 10:E125. [PMID: 30769856 PMCID: PMC6412865 DOI: 10.3390/mi10020125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/26/2022]
Abstract
Coaxial electrohydrodynamic atomization (CEHDA) presents a promising technology for preparing drug-loaded micro/nanoparticles with core-shell structures. Recently, CEHDA has attracted tremendous attention based on its specific advantages, including precise control over particle size and size distribution, reduced initial burst release and mild preparation conditions. Moreover, with different needles, CEHDA can produce a variety of drug-loaded micro/nanoparticles for drug delivery systems. In this review, we summarize recent advances in using double-layer structure, multilayer structure and multicomponent encapsulation strategies for developing micro/nanoparticles. The merits of applying multiplexed electrospray sources for high-throughput production are also highlighted.
Collapse
Affiliation(s)
- Chuanpin Chen
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Wenfang Liu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Ping Jiang
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Tingting Hong
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
15
|
Influence of Solvent Selection in the Electrospraying
Process of Polycaprolactone. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030402] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electrosprayed polycaprolactone (PCL) microparticles are widely used in medical tissueengineering, drug control release delivery, and food packaging due to their prominent structuresand properties. In electrospraying, the selection of a suitable solvent system as the carrier of PCL isfundamental and a prerequisite for the stabilization of electrospraying, and the control ofmorphology and structure of electrosprayed particles. The latter is not only critical for diversifyingthe characteristics of electrosprayed particles and achieving improvement in their properties, butalso promotes the efficiency of the process and deepens the applications of electrosprayed particlesin various fields. In order to make it systematic and more accessible, this review mainly concludesthe effects of different solution properties on the operating parameters in electrospraying on theformation of Taylor cone and the final structure as well as the morphology. Meanwhile,correlations between operating parameters and electrospraying stages are summarized as well.Finally, this review provides detailed guidance on the selection of a suitable solvent systemregarding the desired morphology, structure, and applications of PCL particles.
Collapse
|
16
|
Mehta P, Zaman A, Smith A, Rasekh M, Haj‐Ahmad R, Arshad MS, der Merwe S, Chang M, Ahmad Z. Broad Scale and Structure Fabrication of Healthcare Materials for Drug and Emerging Therapies via Electrohydrodynamic Techniques. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Prina Mehta
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Aliyah Zaman
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Ashleigh Smith
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - Manoochehr Rasekh
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Rita Haj‐Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | | | - Susanna der Merwe
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - M.‐W. Chang
- College of Biomedical Engineering and Instrument ScienceZhejiang University Hangzhou 310027 China
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University Hangzhou 310027 China
| | - Z. Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| |
Collapse
|
17
|
Lee H, An S, Kim S, Jeon B, Kim M, Kim IS. Readily Functionalizable and Stabilizable Polymeric Particles with Controlled Size and Morphology by Electrospray. Sci Rep 2018; 8:15725. [PMID: 30356115 PMCID: PMC6200772 DOI: 10.1038/s41598-018-34124-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/10/2018] [Indexed: 11/09/2022] Open
Abstract
Electrospraying is an effective and facile technique for the production of micro- or nanoparticles with tailored sizes, shapes, morphologies, and microstructures. We synthesized functionalizable poly(styrene-random-glycidyl methacrylate) copolymers and used them to fabricate microparticles via the electrospray technique. The sizes and morphologies of the electrosprayed particles are controlled by altering the process parameters (feed rate and applied voltage), and the composition and thermodynamic properties of the polymer (i.e., compatibility of the polymer with the solvent). We further investigated modifying the surfaces of the electrosprayed particles with 3-mercaptopropionic acid by a simple and efficient thiol-epoxy "click" reaction as a proof-of-concept demonstration that desired functionality can be introduced onto the surfaces of these particles; the outcome was confirmed by various spectroscopic techniques. In addition, the epoxides within the particles easily undergo crosslinking reactions, enabling further effective particle stabilization. The results reveal that the structure and properties of the polymer can be used to fine-tune the structural parameters of the electrosprayed particles, such as their sizes and morphologies, which opens up the possibility of imparting a variety of desired chemical functionalities into the structures of stable organic materials via post-electrospray modification processes.
Collapse
Affiliation(s)
- Hoik Lee
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Sol An
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Korea
| | - Sukjoo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Bokyoung Jeon
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Korea.
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
18
|
Hsu YH, Chen DWC, Li MJ, Yu YH, Chou YC, Liu SJ. Sustained Delivery of Analgesic and Antimicrobial Agents to Knee Joint by Direct Injections of Electrosprayed Multipharmaceutical-Loaded Nano/Microparticles. Polymers (Basel) 2018; 10:polym10080890. [PMID: 30960815 PMCID: PMC6403761 DOI: 10.3390/polym10080890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 11/23/2022] Open
Abstract
In this study, we developed biodegradable lidocaine–/vancomycin–/ceftazidime–eluting poly(d,l–lactide–co–glycolide) (PLGA) nano/microparticulate carriers using an electrospraying process, and we evaluated the release behaviors of the carriers in knee joints. To prepare the particles, predetermined weight percentages of PLGA, vancomycin, ceftazidime, and lidocaine were dissolved in solvents. The PLGA/antibiotic/lidocaine solutions were then fed into a syringe for electrospraying. After electrospraying, the morphology of the sprayed nano/microparticles was elucidated by scanning electron microscopy (SEM). The in vitro antibiotic/analgesic release characteristics of the nano/microparticles were studied using high-performance liquid chromatography (HPLC). In addition, drug release to the synovial tissues and fluids was studied in vivo by injecting drug-loaded nano/microparticles into the knee joints of rabbits. The biodegradable electrosprayed nano/microparticles released high concentrations of vancomycin/ceftazidime (well above the minimum inhibition concentration) and lidocaine into the knee joints for more than 2 weeks and for over 3 days, respectively. Such results suggest that electrosprayed biodegradable nano/microcarriers could be used for the long-term local delivery of various pharmaceuticals.
Collapse
Affiliation(s)
- Yung-Heng Hsu
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Tao-Yuan 33305, Taiwan.
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan.
| | - Dave Wei-Chih Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan.
| | - Min-Jhan Li
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan.
| | - Yi-Hsun Yu
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Tao-Yuan 33305, Taiwan.
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan.
| | - Ying-Chao Chou
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Tao-Yuan 33305, Taiwan.
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan.
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Tao-Yuan 33305, Taiwan.
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
19
|
Toshiyuki Matsumi C, José da Silva W, Kurt Schneider F, Miguel Maia J, E M Morales R, Duarte Araújo Filho W. Micropipette-Based Microfluidic Device for Monodisperse Microbubbles Generation. MICROMACHINES 2018; 9:mi9080387. [PMID: 30424320 PMCID: PMC6187383 DOI: 10.3390/mi9080387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023]
Abstract
Microbubbles have various applications including their use as carrier agents for localized delivery of genes and drugs and in medical diagnostic imagery. Various techniques are used for the production of monodisperse microbubbles including the Gyratory, the coaxial electro-hydrodynamic atomization (CEHDA), the sonication methods, and the use of microfluidic devices. Some of these techniques require safety procedures during the application of intense electric fields (e.g., CEHDA) or soft lithography equipment for the production of microfluidic devices. This study presents a hybrid manufacturing process using micropipettes and 3D printing for the construction of a T-Junction microfluidic device resulting in simple and low cost generation of monodisperse microbubbles. In this work, microbubbles with an average size of 16.6 to 57.7 μm and a polydispersity index (PDI) between 0.47% and 1.06% were generated. When the device is used at higher bubble production rate, the average diameter was 42.8 μm with increased PDI of 3.13%. In addition, a second-order polynomial characteristic curve useful to estimate micropipette internal diameter necessary to generate a desired microbubble size is presented and a linear relationship between the ratio of gaseous and liquid phases flows and the ratio of microbubble and micropipette diameters (i.e., Qg/Ql and Db/Dp) was found.
Collapse
Affiliation(s)
- Carlos Toshiyuki Matsumi
- Department of Electronics, Federal Institute of Education, Science and Technology of Santa Catarina (IFSC), Joinville, SC 89220-618, Brazil.
| | - Wilson José da Silva
- Graduate Program in Electrical and Computer Engineering (CPGEI) and Electronics Engineering Department (DAELN), Federal University of Technology Paraná (UTFPR), Curitiba, PR 80230-901, Brazil.
| | - Fábio Kurt Schneider
- Graduate Program in Electrical and Computer Engineering (CPGEI) and Electronics Engineering Department (DAELN), Federal University of Technology Paraná (UTFPR), Curitiba, PR 80230-901, Brazil.
| | - Joaquim Miguel Maia
- Graduate Program in Electrical and Computer Engineering (CPGEI) and Electronics Engineering Department (DAELN), Federal University of Technology Paraná (UTFPR), Curitiba, PR 80230-901, Brazil.
| | - Rigoberto E M Morales
- Graduate Program in Mechanical and Material Engineering (PPGEM) and Department of Mechanics (DAMEC), Federal University of Technology Paraná (UTFPR), Curitiba, PR 80230-901, Brazil.
| | - Walter Duarte Araújo Filho
- Department of Exact and Earth Sciences (DCET), University of the State of Bahia (UNEB), Salvador, BA 41150-000, Brazil.
| |
Collapse
|
20
|
Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang CH. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 2018; 132:104-138. [PMID: 30415656 DOI: 10.1016/j.addr.2018.07.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
With the advancement in medical science and understanding the importance of biodistribution and pharmacokinetics of therapeutic agents, modern drug delivery research strives to utilize novel materials and fabrication technologies for the preparation of robust drug delivery systems to combat acute and chronic diseases. Compared to traditional drug carriers, which could only control the release of the agents in a monotonic manner, the new drug carriers are able to provide a precise control over the release time and the quantity of drug introduced into the patient's body. To achieve this goal, scientists have introduced "programmed" and "on-demand" approaches. The former provides delivery systems with a sophisticated architecture to precisely tune the release rate for a definite time period, while the latter includes systems directly controlled by an operator/practitioner, perhaps with a remote device triggering/affecting the implanted or injected drug carrier. Ideally, such devices can determine flexible release pattern and intensify the efficacy of a therapy via controlling time, duration, dosage, and location of drug release in a predictable, repeatable, and reliable manner. This review sheds light on the past and current techniques available for fabricating and remotely controlling drug delivery systems and addresses the application of new technologies (e.g. 3D printing) in this field.
Collapse
|
21
|
Paz-Samaniego R, Rascón-Chu A, Brown-Bojorquez F, Carvajal-Millan E, Pedroza-Montero M, Silva-Campa E, Sotelo-Cruz N, López-Franco YL, Lizardi-Mendoza J. Electrospray-assisted fabrication of core-shell arabinoxylan gel particles for insulin and probiotics entrapment. J Appl Polym Sci 2018. [DOI: 10.1002/app.46411] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rita Paz-Samaniego
- Biopolymers-CTAOA, Research Center for Food and Development; CIAD, A.C. 83304 Hermosillo, Sonora Mexico
| | - Agustín Rascón-Chu
- Biotechnology-CTAOV, Research Center for Food and Development; CIAD, A.C. 83304 Hermosillo, Sonora Mexico
| | | | - Elizabeth Carvajal-Millan
- Biopolymers-CTAOA, Research Center for Food and Development; CIAD, A.C. 83304 Hermosillo, Sonora Mexico
| | | | - Erika Silva-Campa
- Department of Physics Research; University of Sonora; Hermosillo Sonora 83000 Mexico
| | | | - Yolanda L. López-Franco
- Biopolymers-CTAOA, Research Center for Food and Development; CIAD, A.C. 83304 Hermosillo, Sonora Mexico
| | - Jaime Lizardi-Mendoza
- Biopolymers-CTAOA, Research Center for Food and Development; CIAD, A.C. 83304 Hermosillo, Sonora Mexico
| |
Collapse
|
22
|
Baspinar Y, Üstündas M, Bayraktar O, Sezgin C. Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterisation. Saudi Pharm J 2018; 26:323-334. [PMID: 29556123 PMCID: PMC5856953 DOI: 10.1016/j.jsps.2018.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/21/2018] [Indexed: 11/30/2022] Open
Abstract
Curcumin as the active compound of turmeric has antioxidative, antiinflammatory, antimicrobial and anticancer properties among others. However, its disadvantageous properties like low solubility, poor bioavailability and rapid degradation under neutral or alkaline pH conditions or when exposed to light limit its clinical application. These problems can be solved by a smart combination of using a natural enhancer like piperine and preparing nanoparticles by a proper method like electrospray. Due to these facts it was aimed in this study to develop curcumin and piperine loaded zein-chitosan nanoparticles step by step. For that purpose various formulation parameters like the concentrations of zein, curcumin, piperine and chitosan and the preparation parameters like the applied voltage and the nozzle diameter were investigated step by step. The nanoparticles were characterised by investigating their shapes, morphologies, particle sizes with help of SEM images and the cytotoxicity on neuroblastoma cells. It was succeeded to prepare curcumin and piperine loaded zein-chitosan nanoparticles having a mean particle size of approximately 500 nm and high encapsulation efficencies for curcumin (89%) and piperine (87%). Using a curcumin concentration of 10-25 µg/ml resulted in reduction of the viability of approximately 50% of the neuroblastoma cells. The here developed nanoparticle formulation consisting of solely natural compounds showed good cytotoxic effects and is a promising approach with appropriate properties for final consumption.
Collapse
Affiliation(s)
- Yücel Baspinar
- Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 35100 Bornova-Izmir, Turkey
| | - Mehmet Üstündas
- Ege University, Faculty of Engineering, Department of Chemical Engineering, 35100 Bornova-Izmir, Turkey
| | - Oguz Bayraktar
- Ege University, Faculty of Engineering, Department of Chemical Engineering, 35100 Bornova-Izmir, Turkey
| | - Canfeza Sezgin
- Ege University, Faculty of Medicine, Medical Oncology, 35100 Bornova-Izmir, Turkey
| |
Collapse
|
23
|
Jenjob R, Seidi F, Crespy D. Encoding materials for programming a temporal sequence of actions. J Mater Chem B 2018; 6:1433-1448. [DOI: 10.1039/c7tb03215c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Materials are usually synthesized to allow a function that is either independent of time or that can be triggered in a specific environment.
Collapse
Affiliation(s)
- R. Jenjob
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - F. Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - D. Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| |
Collapse
|
24
|
Multi-jet electrospinning with high-throughput using a coaxial grooved nozzle and two fluids. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Khalf A, Madihally SV. Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 2016; 112:1-17. [PMID: 27865991 DOI: 10.1016/j.ejpb.2016.11.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/06/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022]
Abstract
Electrospun fibers have seen an insurgence in biomedical applications due to their unique characteristics. Coaxial and triaxial electrospinning techniques have added new impetus via fabrication of multilayered nano and micro-size fibers. These techniques offer the possibility of forming fibers with features such as blending, reinforced core, porous and hollow structure. The unique fabrication process can be used to tailor the mechanical properties, biological properties and release of various factors, which can potentially be useful in various controlled drug delivery applications. Harvesting these advantages, various polymers and their combinations have been explored in a number of drug delivery and tissue regeneration applications. New advances have shown the requirement of drug-polymer compatibility in addition to drug-solvent compatibility. We summarize recent findings using both hydrophilic and hydrophobic (or lipophilic) drugs in hydrophobic or hydrophilic polymers on release behavior. We also describe the fundamental forces involved during the electrospinning process providing insight to the factors to be considered to form fibers. Also, various modeling efforts on the drug release profiles are summarized. In addition new developments in the immune response to the electrospun fibers, and advances in scale-up issues needed for industrial size manufacturing.
Collapse
Affiliation(s)
- Abdurizzagh Khalf
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States.
| | - Sundararajan V Madihally
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States.
| |
Collapse
|
26
|
Moghaddam MK, Mortazavi SM, Khaymian T. Micro/nano-encapsulation of a phase change material by coaxial electrospray method. IRANIAN POLYMER JOURNAL 2015. [DOI: 10.1007/s13726-015-0364-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Khalf A, Singarapu K, Madihally SV. Influence of solvent characteristics in triaxial electrospun fiber formation. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Izadifar M, Haddadi A, Chen X, Kelly ME. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering. NANOTECHNOLOGY 2015; 26:012001. [PMID: 25474543 DOI: 10.1088/0957-4484/26/1/012001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.
Collapse
Affiliation(s)
- Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, 57 Campus Drive, University of Saskatchewan, Saskatoon, SK, S7N5A9, Canada
| | | | | | | |
Collapse
|
29
|
Cao Y, Wang B, Wang Y, Lou D. Dual Drug Release from Core–Shell Nanoparticles with Distinct Release Profiles. J Pharm Sci 2014; 103:3205-16. [DOI: 10.1002/jps.24116] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/06/2014] [Accepted: 07/15/2014] [Indexed: 11/08/2022]
|
30
|
Zamani M, Prabhakaran MP, Thian ES, Ramakrishna S. Protein encapsulated core–shell structured particles prepared by coaxial electrospraying: Investigation on material and processing variables. Int J Pharm 2014; 473:134-43. [DOI: 10.1016/j.ijpharm.2014.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/03/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
31
|
Jiang S, Duan G, Zussman E, Greiner A, Agarwal S. Highly flexible and tough concentric triaxial polystyrene fibers. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5918-5923. [PMID: 24684423 DOI: 10.1021/am500837s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A combination of appropriate reinforcing material and morphology led to the highly tough, flexible, and strong polystyrene fibers by electrospinning. Concentric fiber morphology with reinforcing elastomeric thermoplastic polyurethane (TPU) sandwiched between the two layers of polystyrene made by a special nozzle (triaxial) showed toughness of >270 J g(-1) and 300% elongation without any cracks in comparison to toughness of <0.5 J g(-1) and elongation at break of <5% of polystyrene single fibers. The concentric triaxial morphology showed great advantage in comparison to the coaxial structure. Toughness and elongation at break were 1376 and 628% higher, respectively, for triaxial morphology in comparison to the coaxial fibers because of the better interface from the sandwich structure.
Collapse
Affiliation(s)
- Shaohua Jiang
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces, Universität Bayreuth , Universitätsstraße 30, 95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
Polymeric composite microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer were successfully fabricated by coaxial electrohydrodynamic atomization (CEHDA) process. Process conditions, including nozzle voltage and polymer solution flow rates, as well as solution parameters, such as polymer concentrations, were investigated to ensure the formation of composite microspheres with a doxorubicin-loaded PLGA core surrounded by a relatively drug-free PDLLA shell layer. Various microsphere formulations were fabricated and characterized in terms of their drug distribution, encapsulation efficiency and in vitro release. Numerical simulation of CEHDA process was performed based on a computational fluid dynamics (CFD) model in Fluent by employing the process conditions and fluid properties used in the experiments. The simulation results were compared with the experimental work to illustrate the capability of the CFD model to predict the production of consistent compound droplets, and hence, the expected core-shell structured microspheres.
Collapse
|
33
|
Cao L, Luo J, Tu K, Wang LQ, Jiang H. Generation of nano-sized core-shell particles using a coaxial tri-capillary electrospray-template removal method. Colloids Surf B Biointerfaces 2013; 115:212-8. [PMID: 24362060 DOI: 10.1016/j.colsurfb.2013.11.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
This study proposed a new strategy based on a coaxial tri-capillary electrospray-template removal process for producing nanosized polylactide-b-polyethylene glycol (PLA-PEG) particles with a core-shell structure. Microparticles with core-shell-corona structures were first fabricated by coaxial tri-capillary electrospray, and core-shell nanoparticles less than 200 nm in size were subsequently obtained by removing the PEG template from the core-shell-corona microparticles. The nanoparticle size could be modulated by adjusting the flow rate of corona fluid, and nanoparticles with an average diameter of 106±5 nm were obtained. The nanoparticles displayed excellent dispersion stability in aqueous media and very low cytotoxicity. Paclitaxel was used as a model drug to be incorporated into the core section of the nanoparticles. A drug loading content in the nanoparticles as high as 50.7±1.5 wt% with an encapsulation efficiency of greater than 70% could be achieved by simply increasing the feed rate of the drug solution. Paclitaxel exhibited sustained release from the nanoparticles for more than 40 days. The location of the paclitaxel in the nanoparticles, i.e., in the core or shell layer, did not have a significant effect on its release.
Collapse
Affiliation(s)
- Lihua Cao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jun Luo
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Kehua Tu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China.
| | - Li-Qun Wang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China.
| | - Hongliang Jiang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
34
|
Hwang SY, Yoon WJ, Yun SH, Yoo ES, Kim TH, Im SS. Fabrication of superabsorbent ultrathin nanofibers using mesoporous materials for antimicrobial drug-delivery applications. Macromol Res 2013. [DOI: 10.1007/s13233-013-1178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Ye L, Gao Z, Zhou Y, Yin X, Zhang X, Zhang A, Feng Z. A pH-sensitive binary drug delivery system based on poly(caprolactone)-heparin conjugates. J Biomed Mater Res A 2013; 102:880-9. [DOI: 10.1002/jbm.a.34735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Lin Ye
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Zemin Gao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Yu Zhou
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Xuan Yin
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Xinpeng Zhang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Aiying Zhang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Zengguo Feng
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| |
Collapse
|
36
|
Two novel approaches targeting cancer cell membrane for tumor therapy. Med Hypotheses 2013; 80:380-2. [DOI: 10.1016/j.mehy.2012.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/23/2012] [Indexed: 11/21/2022]
|
37
|
Mechanism of drug release from double-walled PDLLA(PLGA) microspheres. Biomaterials 2013; 34:3902-11. [PMID: 23453059 DOI: 10.1016/j.biomaterials.2013.02.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 11/22/2022]
Abstract
The drug release and degradation behavior of two double-walled microsphere formulations consisting of a doxorubicin-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) core (∼46 kDa) surrounded by a poly(d,l-lactic acid) (PDLLA) shell layer (∼55 and 116 kDa) were examined. It was postulated that different molecular weights of the shell layer could modulate the erosion of the outer coating and limit the occurrence of water penetration into the inner drug-loaded core on various time scales, and therefore control the drug release from the microspheres. For both microsphere formulations, the drug release profiles were observed to be similar. The degradation of the microspheres was monitored for a period of about nine weeks and analyzed using scanning electron microscopy, laser scanning confocal microscopy, and gel permeation chromatography. Interestingly, both microsphere formulations exhibited occurrence of bulk erosion of PDLLA on a similar time scale despite different PDLLA molecular weights forming the shell layer. The shell layer of the double-walled microspheres served as an effective diffusion barrier during the initial lag phase period and controlled the release rate of the hydrophilic drug independent of the molecular weight of the shell layer.
Collapse
|