1
|
Cai Z, Badr RGM, Hauer L, Chaudhuri K, Skabeev A, Schmid F, Pham JT. Phase separation dynamics in wetting ridges of polymer surfaces swollen with oils of different viscosities. SOFT MATTER 2024; 20:7300-7312. [PMID: 39248033 DOI: 10.1039/d4sm00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
When drops are placed on a sufficiently soft surface, the drop surface tension drives an out of plane deformation around the contact line (i.e., a wetting ridge). For soft elastomeric surfaces that are swollen with a liquid, capillarity from a drop can induce a phase separation in the wetting ridge. Using confocal microscopy, we study the dynamics of phase separation at the wetting ridge of glycerol drops on silicone elastomers, which are swollen with silicone oils of varying viscosity (i.e., molecular weight). We show that the viscosity of the swelling oil plays a large role in the oil separation size and separation rate. For networks swollen to near their maximum swelling (i.e., saturated), lower viscosity oil separates more and separates faster at early times compared to larger viscosity oil. During late-stage wetting, the growth rate of the separation is a function of viscosity and swelling ratio, which can be described by a simple diffusive model and a defined wetting ridge geometry. In this late-stage wetting, the higher viscosity oil evidently grows faster, likely because it is further from reaching equilibrium. Interestingly, the separated oil phase region grows with a nearly constant, geometrically similar shape. Understanding how phase separation occurs on swollen substrates should provide information on how to control drop spreading, sliding, adhesion, or friction on such surfaces.
Collapse
Affiliation(s)
- Zhuoyun Cai
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Rodrique G M Badr
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 7, 55099, Germany.
| | - Lukas Hauer
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Krishnaroop Chaudhuri
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Artem Skabeev
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 7, 55099, Germany.
| | - Jonathan T Pham
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
2
|
Dixit M, Taniguchi T. Exploring the Role of Hydroxy- and Phosphate-Terminated cis-1,4-Polyisoprene Chains in the Formation of Physical Junction Points in Natural Rubber: Insights from Molecular Dynamics Simulations. ACS POLYMERS AU 2024; 4:273-288. [PMID: 39156555 PMCID: PMC11328332 DOI: 10.1021/acspolymersau.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 08/20/2024]
Abstract
This study elucidates the pivotal role of terminal structures in cis-1,4-polyisoprene (PI) chains, contributing to the exceptional mechanical properties of Hevea natural rubber (NR). NR's unique networking structure, crucial for crack resistance, elasticity, and strain-induced crystallization, involves two terminal groups, ω and α. The proposed ω terminal structure is dimethyl allyl-(trans-1,4-isoprene)2, and α terminals exist in various forms, including hydroxy, ester, and phosphate groups. Among others, we investigated three types of cis-1,4-PI with different terminal combinations: HPIH (pure PI with H terminal), ωPIα6 (PI with ω and α6 terminals), and ωPIPO4 (PI with ω and PO4 terminals) and revealed significant dynamics variations. Hydrogen bonds between α6 and α6 and PO4 and PO4 residues in ωPIα6 and ωPIPO4 systems induce slower dynamics of hydroxy- and phosphate-terminated PI chains. Associations between α6 and α6 and PO4 and PO4 terminals are markedly stronger than ω and ω, and hydrogen terminals in HPIH and ω PIα6,PO4 systems. Phosphate terminals exhibit a stronger mutual association than hydroxy terminals. Potentials of mean force analysis and cluster-formation-fraction computations reveal stable clusters in ωPIα6 and ωPIPO4 , supporting the formation of polar aggregates (physical junction points). Notably, phosphate terminal groups facilitate large and highly stable phosphate polar aggregates, crucial for the natural networking structure responsible for NR's outstanding mechanical properties compared to synthetic PI rubber. This comprehensive investigation provides valuable insights into the role of terminal groups in cis-1,4-PI melt systems and their profound impact on the mechanical properties of NR.
Collapse
Affiliation(s)
- Mayank Dixit
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Taniguchi
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
3
|
Dixit M, Taniguchi T. Role of Terminal Groups of cis-1,4-Polyisoprene Chains in the Formation of Physical Junction Points in Natural Rubber. Biomacromolecules 2023; 24:3589-3602. [PMID: 37527033 DOI: 10.1021/acs.biomac.3c00355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The terminal structures of cis-1,4-polyisoprene (PI) chains play a vital role in the excellent comprehensive performance of Hevea natural rubber (NR) with properties such as high toughness, tear-resistance, and wet skid resistance. The cis-1,4-polyisoprene chain constituting NR exhibits a distinct composition of terminal groups comprising two distinct types, namely, the ω and α terminal groups. The structures of the ω terminal [dimethyl allyl (DMA)-(trans-1,4-isoprene)2] and six kinds of α end groups of the polymer chain of NR have been explored by utilizing a newly developed 2D NMR method. In the present work, we examine different kinds of PI melt systems, and we choose various combinations of terminal groups: Hydrogen, one DMA unit with two trans isoprene units as ω end groups and ester-terminated isopentene (α1), hydroxy-terminated isopentene (α2), ester-terminated isobutane (α3), hydroxy-terminated isobutane (α4), ester-terminated 1,4-cis-isoprene (α5), and hydroxy-terminated 1,4-cis-isoprene (α6), i.e., HPIH (PI0)-pure PI (Hydrogen terminal), ωPIα1 (PII), ωPIα2 (PIII), ωPIα3 (PIIII), ωPIα4 (PIIV), ωPIα5 (PIV), and ωPIα6 (PIVI). We evaluated dynamic and static properties of PI chains such as the end-to-end vector autocorrelation function (C(t)), its average relaxation time (τ), end-to-end distance (Ree), and radius of gyration (Rg). We also estimated the diffusion coefficients of polyisoprene chains and pair correlation functions [radial distribution functions (RDFs)], potentials of mean force (PMFs) in between end residues, and survival probability (P(τ)) of end groups around the end group by analyzing the equilibrated trajectories of full-atom MD simulations. As per the examination of C(t), rotational relaxation time τ, and RDFs, we discovered that the existence of a strong hydrogen bond in α2-α2, α4-α4, and α6-α6 residues makes the dynamics of hydroxy-terminated polyisoprene chains in ωPIα2,α4,α6 melt systems slower. From the analyses of RDFs and PMFs (W(r)), the association between [α2]-[α2], [α4]-[α4], and [α6]-[α6] terminals in ωPIα2,α4,α6 melt systems is significantly stronger than in [ISO]-[ISO] [Hydrogen terminated 1,4-cis-isoprene:(ISO)] in HPIH and ω-ω, [α1]-[α1], [α3]-[α3], and [α5]-[α5] in ωPIα1,α3,α5 systems. We quantified the fraction of cluster formation of terminal groups of a given size in the seven PI melt systems by employing the criteria of PMFs. It is revealed that no stable cluster exists in the HPIH, ωPIα1, ωPIα3, and ωPIα5 melt systems. Conversely, in the ωPIα2, ωPIα4, and ωPIα6 systems, we perceived stable clusters of [(α2)p] [(α4)p] and [(α6)p] end groups where p (2 ≤ x ≤ 6). These stable clusters validate the presence of physical junction points in between hydroxy-terminated polyisoprene chains through their α2, α4, and α6 terminals. These physical junction points might be crucial for superior properties of NR such as high toughness, crack growth resistance, and strain-induced crystallization.
Collapse
Affiliation(s)
- Mayank Dixit
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Taniguchi
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Svaneborg C, Everaers R. Multiscale equilibration of highly entangled isotropic model polymer melts. J Chem Phys 2023; 158:054903. [PMID: 36754791 DOI: 10.1063/5.0123431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present a computationally efficient multiscale method for preparing equilibrated, isotropic long-chain model polymer melts. As an application, we generate Kremer-Grest melts of 1000 chains with 200 entanglements and 25 000-2000 beads/chain, which cover the experimentally relevant bending rigidities up to and beyond the limit of the isotropic-nematic transition. In the first step, we employ Monte Carlo simulations of a lattice model to equilibrate the large-scale chain structure above the tube scale while ensuring a spatially homogeneous density distribution. We then use theoretical insight from a constrained mode tube model to introduce the bead degrees of freedom together with random walk conformational statistics all the way down to the Kuhn scale of the chains. This is followed by a sequence of simulations with carefully parameterized force-capped bead-spring models, which slowly introduce the local bead packing while reproducing the larger-scale chain statistics of the target Kremer-Grest system at all levels of force-capping. Finally, we can switch to the full Kremer-Grest model without perturbing the structure. The resulting chain statistics is in excellent agreement with literature results on all length scales accessible in brute-force simulations of shorter chains.
Collapse
Affiliation(s)
- Carsten Svaneborg
- University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ralf Everaers
- ENSL, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'École Normale Supérieure de Lyon, F-69342 Lyon, France
| |
Collapse
|
5
|
Dixit M, Taniguchi T. Substantial Effect of Terminal Groups in cis-Polyisoprene: A Multiscale Molecular Dynamics Simulation Study. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mayank Dixit
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Taniguchi
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
6
|
Molecular simulation guided constitutive modeling of filled rubber: Bridging structural parameters to constitutive equations. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Determination of elastic constants of functionalized graphene-based epoxy nanocomposites: a molecular modeling and MD simulation study. J Mol Model 2022; 28:143. [PMID: 35543752 DOI: 10.1007/s00894-022-05134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
Functionalization of graphene is the best way to create a high degree of dispersion and bonding to polymer matrix in order to obtain high performance composites. The effects of carboxyl (-COOH) functionalized graphene (FG) on the mechanical properties of its epoxy-based nanocomposites have been examined by molecular dynamics (MD) simulations. Simulations cells of nanocomposites with varying wt% of FG (1, 2, and 3 wt%) were constructed using Material Studio 6.0. The MD simulation findings of nanocomposites reveal that they have better mechanical properties such as elastic modulus, bulk modulus, shear modulus, and the Poisson's ratio than pure epoxy. Furthermore, the computational results of nanocomposites have been effectively confirmed with available experimental data. Therefore, the current MD simulation shows a decent computational sign for the existing experimental and simulation outcomes on mechanical properties of FG/epoxy nanocomposites.
Collapse
|
8
|
Rissanou A, Chazirakis A, Polinska P, Burkhart C, Doxastakis M, Harmandaris V. Polybutadiene Copolymers via Atomistic and Systematic Coarse-Grained Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anastassia Rissanou
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas, (FORTH), IACM/FORTH, GR-71110 Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
| | - Antonis Chazirakis
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas, (FORTH), IACM/FORTH, GR-71110 Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
| | | | - Craig Burkhart
- The Goodyear Tire and Rubber Company, 142 Goodyear Blvd., 44305 Akron, Ohio, United States
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996 Knoxville, Tennessee, United States
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas, (FORTH), IACM/FORTH, GR-71110 Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| |
Collapse
|
9
|
In‐noi O, Prasitnok K. A Coarse‐Grained Model for
cis
‐Polyisoprene: Thermal Expansion and Glass Transition Temperature. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Orrasa In‐noi
- Department of Chemistry Faculty of Science Mahasarakham University Mahasarakham 44150 Thailand
| | - Khongvit Prasitnok
- Department of Chemistry Faculty of Science Mahasarakham University Mahasarakham 44150 Thailand
| |
Collapse
|
10
|
Deng L, Fan S, Zhang Y, Huang Z, Zhou H, Jiang S, Li J. Multiscale Modeling and Simulation of Polymer Blends in Injection Molding: A Review. Polymers (Basel) 2021; 13:polym13213783. [PMID: 34771340 PMCID: PMC8588530 DOI: 10.3390/polym13213783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Modeling and simulation of the morphology evolution of immiscible polymer blends during injection molding is crucial for predicting and tailoring the products’ performance. This paper reviews the state-of-the-art progress in the multiscale modeling and simulation of injection molding of polymer blends. Technological development of the injection molding simulation on a macroscale was surveyed in detail. The aspects of various models for morphology evolution on a mesoscale during injection molding were discussed. The current scale-bridging strategies between macroscopic mold-filling flow and mesoscopic morphology evolution, as well as the pros and cons of the solutions, were analyzed and compared. Finally, a comprehensive summary of the above models is presented, along with the outlook for future research in this field.
Collapse
Affiliation(s)
- Lin Deng
- School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (L.D.); (S.F.)
| | - Suo Fan
- School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (L.D.); (S.F.)
| | - Yun Zhang
- State Key Laboratory of Material Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.Z.); (H.Z.)
| | - Zhigao Huang
- State Key Laboratory of Material Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.Z.); (H.Z.)
- Correspondence:
| | - Huamin Zhou
- State Key Laboratory of Material Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.Z.); (H.Z.)
| | - Shaofei Jiang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.J.); (J.L.)
| | - Jiquan Li
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.J.); (J.L.)
| |
Collapse
|
11
|
Li W, Jana PK, Behbahani AF, Kritikos G, Schneider L, Polińska P, Burkhart C, Harmandaris VA, Müller M, Doxastakis M. Dynamics of Long Entangled Polyisoprene Melts via Multiscale Modeling. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Li
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Pritam K. Jana
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| | - Alireza F. Behbahani
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Greece
| | - Georgios Kritikos
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ludwig Schneider
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| | | | - Craig Burkhart
- The Goodyear Tire & Rubber Company, Akron, Ohio 44305, United States
| | - Vagelis A. Harmandaris
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR-71110, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
12
|
Vedelago J, Mattea F, Triviño S, Montesinos MDM, Keil W, Valente M, Romero M. Smart material based on boron crosslinked polymers with potential applications in cancer radiation therapy. Sci Rep 2021; 11:12269. [PMID: 34112821 PMCID: PMC8192942 DOI: 10.1038/s41598-021-91413-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/25/2021] [Indexed: 12/01/2022] Open
Abstract
Organoboron compounds have been playing an increasingly important role in analytical chemistry, material science, health applications, and particularly as functional polymers like boron carriers for cancer therapy. There are two main applications of boron isotopes in radiation cancer therapy, Boron Neutron Capture Therapy and Proton Boron Fusion Therapy. In this study, a novel and original material consisting of a three-dimensional polymer network crosslinked with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{10}$$\end{document}10B enriched boric acid molecules is proposed and synthesized. The effects of the exposition to thermal neutrons were studied analyzing changes in the mechanical properties of the proposed material. Dedicated Monte Carlo simulations, based on MCNP and FLUKA main codes, were performed to characterize interactions of the proposed material with neutrons, photons, and charged particles typically present in mixed fields in nuclear reactor irradiations. Experimental results and Monte Carlo simulations were in agreement, thus justifying further studies of this promising material.
Collapse
Affiliation(s)
- José Vedelago
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Córdoba, X5000HUA, Argentina.,Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), FAMAF-UNC, Córdoba, X5000HUA, Argentina.,Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Facundo Mattea
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), FAMAF-UNC, Córdoba, X5000HUA, Argentina.,Departamento de Química Orgánica, FCQ-UNC, Córdoba, X5000HUA, Argentina.,Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, X5000HUA, Argentina
| | - Sebastián Triviño
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), FAMAF-UNC, Córdoba, X5000HUA, Argentina.,Centro de Medicina Nuclear y Radioterapia Patagonia Austral (CEMNPA), Río Gallegos, Z9400, Argentina.,FCEFyN-UNC & CNEA-Reactor Nuclear RA-0, Córdoba, X5000HUA, Argentina
| | - María Del Mar Montesinos
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, FCQ-UNC, Córdoba, X5000HUA, Argentina
| | - Walter Keil
- FCEFyN-UNC & CNEA-Reactor Nuclear RA-0, Córdoba, X5000HUA, Argentina
| | - Mauro Valente
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Córdoba, X5000HUA, Argentina. .,Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), FAMAF-UNC, Córdoba, X5000HUA, Argentina. .,Departamento de Ciencias Físicas, Centro de Física e Ingeniería en Medicina (CFIM), Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| | - Marcelo Romero
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), FAMAF-UNC, Córdoba, X5000HUA, Argentina. .,Departamento de Química Orgánica, FCQ-UNC, Córdoba, X5000HUA, Argentina. .,Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, X5000HUA, Argentina.
| |
Collapse
|
13
|
Effectiveness of coarse graining degree and speedup on the dynamic properties of homopolymer. J Mol Model 2021; 27:55. [PMID: 33511476 DOI: 10.1007/s00894-020-04661-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Evaluation of effective coarse graining (CG) degree and reasonable speedup relative to all-atomistic (AA) model was conducted to provide a basis for building appropriate larger-scale model. The reproducibility of atomistic conformation and temperature transferability both act as the analysis criteria to resolve the maximum acceptable CG degree. Taking short- and long time spans into account simultaneously in the estimation of computational speedup, a dynamic scaling factor is accessible in fitting mean squared displacement ratio of CG to AA as an exponential function. Computing loss in parallel running is an indispensable component in acceleration, which was also added in the evaluation. Subsequently, a quantified prediction of CG speedup arises as a multiplication of dynamic scaling factor, computing loss, time step, and the square of reduction in the number of degrees of freedom. Polyethylene oxide was adopted as a reference system to execute the direct Boltzmann inversion and iterative Boltzmann inversion. Bonded and non-bonded potentials were calculated in CG models with 1~4 monomers per bead. The effective CG degree was determined as two at the most with a speedup of four orders magnitude over AA in this study. Determination of effectiveness CG degree and the corresponding speedup prediction provide available tools in larger spatiotemporal-scale calculations.
Collapse
|
14
|
Everaers R, Karimi-Varzaneh HA, Fleck F, Hojdis N, Svaneborg C. Kremer–Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02428] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ralf Everaers
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l’ENS de Lyon, F-69342 Lyon, France
| | | | - Frank Fleck
- Continental Reifen Deutschland GmbH, Jädekamp 30, D-30419 Hannover, Germany
| | - Nils Hojdis
- Institute of Applied Polymer Chemistry, Aachen University of Applied Sciences, Heinrich-Mussmann-Str.1, 52428 Jülich, Germany
| | - Carsten Svaneborg
- University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
15
|
Temperature-Dependent Gas Transport Behavior in Cross-Linked Liquid Crystalline Polyacrylate Membranes. MEMBRANES 2019; 9:membranes9080104. [PMID: 31434248 PMCID: PMC6722519 DOI: 10.3390/membranes9080104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/16/2022]
Abstract
Stable, cross-linked, liquid crystalline polymer (LCP) films for membrane separation applications have been fabricated from the mesogenic monomer 11-(4-cyanobiphenyl-4′-yloxy) undecyl methacrylate (CNBPh), non-mesogenic monomer 2-ethylhexyl acrylate (2-EHA), and cross-linker ethylene glycol dimethacrylate (EGDMA) using an in-situ free radical polymerization technique with UV initiation. The phase behavior of the LCP membranes was characterized using differential scanning calorimetry (DSC) and X-ray scattering, and indicated the formation of a nematic liquid crystalline (LC) phase above the glass transition temperature. The single gas transport behavior of CO2, CH4, propane, and propylene in the cross-linked LCP membranes was investigated for a range of temperatures in the LC mesophase and the isotropic phase. Solubility of the gases was dependent not only on the condensability in the LC mesophase, but also on favorable molecular interactions of penetrant gas molecules exhibiting a charge separation, such as CO2 and propylene, with the ordered polar mesogenic side chains of the LCP. Selectivities for various gas pairs generally decreased with increasing temperature and were discontinuous across the nematic–sotropic transition. Sorption behavior of CO2 and propylene exhibited a significant change due to a decrease in favorable intermolecular interactions in the disordered isotropic phase. Higher cross-link densities in the membrane generally led to decreased selectivity at low temperatures when the main chain motion was limited by the lack of mesogen mobility in the ordered nematic phase. However, at higher temperatures, increasing the cross-link density increased selectivity as the cross-links acted to limit chain mobility. Mixed gas permeation measurements for propylene and propane showed close agreement with the results of the single gas permeation experiments.
Collapse
|
16
|
Megariotis G, Vogiatzis GG, Sgouros AP, Theodorou DN. Slip Spring-Based Mesoscopic Simulations of Polymer Networks: Methodology and the Corresponding Computational Code. Polymers (Basel) 2018; 10:E1156. [PMID: 30961081 PMCID: PMC6404024 DOI: 10.3390/polym10101156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022] Open
Abstract
In previous work by the authors, a new methodology was developed for Brownian dynamics/kinetic Monte Carlo (BD/kMC) simulations of polymer melts. In this study, this methodology is extended for dynamical simulations of crosslinked polymer networks in a coarse-grained representation, wherein chains are modeled as sequences of beads, each bead encompassing a few Kuhn segments. In addition, the C++ code embodying these simulations, entitled Engine for Mesoscopic Simulations for Polymer Networks (EMSIPON) is described in detail. A crosslinked network of cis-1,4-polyisoprene is chosen as a test system. From the thermodynamic point of view, the system is fully described by a Helmholtz energy consisting of three explicit contributions: entropic springs, slip springs and non-bonded interactions. Entanglements between subchains in the network are represented by slip springs. The ends of the slip springs undergo thermally activated hops between adjacent beads along the chain backbones, which are tracked by kinetic Monte Carlo simulation. In addition, creation/destruction processes are included for the slip springs at dangling subchain ends. The Helmholtz energy of non-bonded interactions is derived from the Sanchez⁻Lacombe equation of state. The isothermal compressibility of the polymer network is predicted from equilibrium density fluctuations in very good agreement with the underlying equation of state and with experiment. Moreover, the methodology and the corresponding C++ code are applied to simulate elongational deformations of polymer rubbers. The shear stress relaxation modulus is predicted from equilibrium simulations of several microseconds of physical time in the undeformed state, as well as from stress-strain curves of the crosslinked polymer networks under deformation.
Collapse
Affiliation(s)
- Grigorios Megariotis
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| | - Georgios G Vogiatzis
- Polymer Technology, Department of Mechanical Engineering, Eindhoven University of Technology, PO BOX 513, 5600MB Eindhoven, The Netherlands.
| | - Aristotelis P Sgouros
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| |
Collapse
|
17
|
Ryu MS, Kim HG, Kim HY, Min KS, Kim HJ, Lee HM. Prediction of the glass transition temperature and design of phase diagrams of butadiene rubber and styrene-butadiene rubber via molecular dynamics simulations. Phys Chem Chem Phys 2018; 19:16498-16506. [PMID: 28608873 DOI: 10.1039/c7cp00080d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To prevent car accidents, it is important to evaluate the thermal stability of tire rubbers, such as natural rubber (NR), butadiene rubber (BR), and styrene-butadiene rubber (SBR). Controlling the glass transition temperature (Tg) is the main factor for obtaining desirable thermal stability. Here, we developed an optimized equation for the prediction of the Tg of the various rubber systems using molecular dynamics (MD) simulations. We modeled a random copolymer system, blended monomers, and calculated the Tg of butadiene isomers in each composition. From these results, we designed the Tg contour of ternary cis-trans-vinyl butadiene and derived an equation of Tg for the ternary system. Moreover, we developed an equation to evaluate the pseudo-ternary Tg of quaternary SBR and plotted it. Our results present a novel way of predicting the Tg of ternary BR and quaternary SBR, which is critical for rational tire design with optimized thermal and mechanical stability.
Collapse
Affiliation(s)
- Myung Shin Ryu
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
18
|
Gold BJ, Hövelmann CH, Lühmann N, Székely NK, Pyckhout-Hintzen W, Wischnewski A, Richter D. Importance of Compact Random Walks for the Rheology of Transient Networks. ACS Macro Lett 2017; 6:73-77. [PMID: 35632894 DOI: 10.1021/acsmacrolett.6b00880] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Controlling the mechanical behavior of novel supramolecular materials is of the utmost importance and requires a fundamental understanding of the underlying physical processes. We present a multimethods approach to the dynamics of entangled transient polyisoprene networks. Small-angle neutron scattering (SANS) on randomly functionalized chains shows homogeneous supramolecular melts with Gaussian chain conformations. The H-bond lifetimes (dielectric α*-process) and the rheological response in terms of the loss modulus G″ differ by 2 orders of magnitude in time. Within the concept of a compact random walk (RW), where the random walker (urazole group acting as a sticker) undergoes multiple returns to its starting point and following the concept of theoretical proposed renormalized sticky bond lifetimes, we quantitatively solve this longstanding and unexplained large discrepancy: While the bond opening gives rise to the dielectric response, for rheological relaxation the association with a new partner is relevant. This takes place only after multiple returns to the original binding partner.
Collapse
Affiliation(s)
- B. J. Gold
- Jülich
Centre for Neutron Science (JCNS-1) and Institute for Complex Systems
(ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - C. H. Hövelmann
- Jülich
Centre for Neutron Science (JCNS-1) and Institute for Complex Systems
(ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - N. Lühmann
- Jülich
Centre for Neutron Science (JCNS-1) and Institute for Complex Systems
(ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - N. K. Székely
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - W. Pyckhout-Hintzen
- Jülich
Centre for Neutron Science (JCNS-1) and Institute for Complex Systems
(ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - A. Wischnewski
- Jülich
Centre for Neutron Science (JCNS-1) and Institute for Complex Systems
(ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - D. Richter
- Jülich
Centre for Neutron Science (JCNS-1) and Institute for Complex Systems
(ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
19
|
Hou G, Tao W, Liu J, Gao Y, Zhang L, Li Y. Tailoring the dispersion of nanoparticles and the mechanical behavior of polymer nanocomposites by designing the chain architecture. Phys Chem Chem Phys 2017; 19:32024-32037. [DOI: 10.1039/c7cp06199d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The dispersion of nanoparticles with different polymer–nanoparticle interaction strengths and chain architectures.
Collapse
Affiliation(s)
- Guanyi Hou
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Wei Tao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources of Ministry of Education
- Beijing University of Chemical Technology
| | - Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources of Ministry of Education
- Beijing University of Chemical Technology
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources of Ministry of Education
- Beijing University of Chemical Technology
| | - Ying Li
- Department of Mechanical Engineering and Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| |
Collapse
|
20
|
Li Y. Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics. SOFT MATTER 2016; 12:3202-3213. [PMID: 26924574 DOI: 10.1039/c6sm00108d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The surface instability of monolayer graphene supported by a soft (polymer) substrate under equal-biaxial compression has been explored through large scale coarse-grained molecular simulations. Regardless of the interfacial adhesion strength between the graphene and the substrate, herringbone wrinkles have always been observed due to their lowest energy status, compared with the checkerboard, hexagonal, triangular and one dimensional sinusoidal modes. Moreover, the graphene-polymer substrate interaction energy has a negligible effect on the critical strain for the onset of these wrinkles. Yet, if the graphene is bonded to a rigid (non-deformable) substrate, the critical strain increases with increasing graphene-substrate interfacial strength. The surface wrinkles of graphene are delayed and suppressed by the strong bonding of graphene to the rigid substrate. Besides, only localized folds and crumples have been observed on the surface of graphene, when graphene-substrate interaction energy is strong enough. All these observations signal that the deformability (stiffness) of the substrate plays an essential role in determining the morphology of supported graphene under compression. In addition, when a flat graphene is attached on a highly pre-strained (50%) polymer substrate, wrinkles will be formed on its surface during the relaxation of pre-strain within the polymer substrate. The wrinkled graphene could be stretched up to 50% without fracture, accompanied by the diminishing of surface wrinkles. Therefore, it opens a new avenue to enhance the stretchability of graphene materials, and enables the future applications of graphene and other 2D materials in stretchable and flexible electronics.
Collapse
Affiliation(s)
- Ying Li
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
21
|
Guseva DV, Komarov PV, Lyulin AV. Computational synthesis, structure, and glass transition of (1,4) Cis-polyisoprene-based nanocomposite by multiscale modeling. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daria V. Guseva
- Group Theory of Polymers and Soft Matter Department of Applied Physics; Technische Universiteit Eindhoven; P.O. Box 513 5600 MB Eindhoven The Netherlands
- Chair of Polymer and Crystal Physics, Physics Department; M. V. Lomonosov Moscow State University; Moscow 119991 Russia
| | - Pavel V. Komarov
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova St. 28 Moscow 119991 Russia
- Department of Theoretical Physics; Tver State University; Sadovyj per. 35 Tver 170002 Russia
| | - Alexey V. Lyulin
- Group Theory of Polymers and Soft Matter Department of Applied Physics; Technische Universiteit Eindhoven; P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
22
|
Developing coarse-grained potentials for the prediction of multi-properties of trans-1,4-polybutadiene melt. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Tang S, Li Y, Liu WK, Huang XX. Surface Ripples of Polymeric Nanofibers under Tension: The Crucial Role of Poisson’s Ratio. Macromolecules 2014. [DOI: 10.1021/ma5012599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shan Tang
- Department
of Engineering Mechanics, Chongqing University, Chongqing, China, 400017
| | - Ying Li
- Department
of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Wing Kam Liu
- Department
of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States
- Distinguished
Scientists Program Committee, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Xiao Xu Huang
- College
of Material Science and Engineering, Chongqing University, Chongqing, China, 400017
| |
Collapse
|
24
|
Bao G, Bazilevs Y, Chung JH, Decuzzi P, Espinosa HD, Ferrari M, Gao H, Hossain SS, Hughes TJR, Kamm RD, Liu WK, Marsden A, Schrefler B. USNCTAM perspectives on mechanics in medicine. J R Soc Interface 2014; 11:20140301. [PMID: 24872502 PMCID: PMC4208360 DOI: 10.1098/rsif.2014.0301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/07/2014] [Indexed: 01/09/2023] Open
Abstract
Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies.
Collapse
Affiliation(s)
- Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yuri Bazilevs
- Department of Structural Engineering, University of California, San Diego, CA, USA
| | - Jae-Hyun Chung
- Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Paolo Decuzzi
- Department of Translational Imaging, The Methodist Hospital Research Institute in Houston, Houston, TX 77030, USA
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Mauro Ferrari
- Department of Translational Imaging, The Methodist Hospital Research Institute in Houston, Houston, TX 77030, USA
| | - Huajian Gao
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Shaolie S Hossain
- Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, MC 2-255, Houston, TX 77030, USA
| | - Thomas J R Hughes
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712-1229, USA
| | - Roger D Kamm
- Mechanical Engineering, Biological Engineering, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, MA, USA
| | - Wing Kam Liu
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Alison Marsden
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Bernhard Schrefler
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|
25
|
Agrawal A, Aryal D, Perahia D, Ge T, Grest GS. Coarse-Graining Atactic Polystyrene and Its Analogues. Macromolecules 2014. [DOI: 10.1021/ma500319v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anupriya Agrawal
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dipak Aryal
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dvora Perahia
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Ting Ge
- Department
of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gary S. Grest
- Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
26
|
Xia W, Mishra S, Keten S. Substrate vs. free surface: Competing effects on the glass transition of polymer thin films. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model 2013; 19:3719-31. [DOI: 10.1007/s00894-013-1906-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022]
|
28
|
|
29
|
|
30
|
Pyckhout-Hintzen W, Westermann S, Wischnewski A, Monkenbusch M, Richter D, Straube E, Farago B, Lindner P. Direct observation of nonaffine tube deformation in strained polymer networks. PHYSICAL REVIEW LETTERS 2013; 110:196002. [PMID: 23705721 DOI: 10.1103/physrevlett.110.196002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 06/02/2023]
Abstract
We present a one-to-one comparison of polymer segmental fluctuations as measured by small angle neutron scattering in a network under deformation with those obtained by neutron spin echo spectroscopy. This allows an independent proof of the strain dependence of the chain entanglement length. The experimentally observed nonaffine square-root dependence of the tube channel on strain is in excellent agreement with theoretical predictions and permits us to exclude an often invoked nondeformed as well as affinely deformed tube.
Collapse
Affiliation(s)
- W Pyckhout-Hintzen
- Jülich Centre for Neutron Science (JCNS1) and Institute for Complex Systems (ICS1), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Effect of polymer solvent on the mechanical properties of entangled polymer gels: Coarse-grained molecular simulation. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Anogiannakis SD, Tzoumanekas C, Theodorou DN. Microscopic Description of Entanglements in Polyethylene Networks and Melts: Strong, Weak, Pairwise, and Collective Attributes. Macromolecules 2012. [DOI: 10.1021/ma300912z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefanos D. Anogiannakis
- School of Chemical Engineering, Zografou Campus, National Technical University of Athens, GR-15780 Athens,
Greece
| | - Christos Tzoumanekas
- School of Chemical Engineering, Zografou Campus, National Technical University of Athens, GR-15780 Athens,
Greece
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven,
The Netherlands
| | - Doros N. Theodorou
- School of Chemical Engineering, Zografou Campus, National Technical University of Athens, GR-15780 Athens,
Greece
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven,
The Netherlands
| |
Collapse
|
33
|
Li Y, Tang S, Abberton BC, Kröger M, Burkhart C, Jiang B, Papakonstantopoulos GJ, Poldneff M, Liu WK. A predictive multiscale computational framework for viscoelastic properties of linear polymers. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.09.055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Liu J, Zhang L, Cao D, Shen J, Gao Y. COMPUTATIONAL SIMULATION OF ELASTOMER NANOCOMPOSITES: CURRENT PROGRESS AND FUTURE CHALLENGES. RUBBER CHEMISTRY AND TECHNOLOGY 2012. [DOI: 10.5254/rct.12.87966] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
In the field of elastomer nanocomposites (ENCs), computational simulation technique is becoming more and more essential, as a result of its ability to provide important and clear information at the molecular level, which is always difficult to obtain or not accessible through experimental investigations. We focus on summarizing the progress achieved in the simulation research of three critical topics of ENCs, namely, (i) the dispersion mechanism (particularly polymer-mediated interparticle interaction, the “many-body” effect at high filler loading), (ii) the characterization of the nanoscale/microscale structure and dynamics [the modified chain configuration in the presence of nanoparticles (NPs), the interfacial binding strength determining the efficiency of the stress transfer, the possibly altered interfacial chain structure, interfacial segmental dynamics leading to the shift of the glass transition temperature Tg, the formation of the filler network and its structure, the chemical cross-linking process], and (iii) the macroscopic viscoelasticity (the Payne effect), mechanical reinforcement, and physical property (thermal conductivity). Since recently only limited simulation work has been carried out pertaining to ENCs, we discuss these three topics in light of the simulation and theoretical achievements of polymer nanocomposites (mainly polymer melts filled with NPs). Meanwhile, some relevant experimental studies are also included for better illustration. Furthermore, for each topic, three typically different reinforcing fillers, such as three-dimensional spherical, two-dimensional sheet, and one-dimensional rod NPs, separately corresponding to carbon black or silica, clay sheets, and carbon nanotubes intensively used in the practical applications of ENCs, are illustrated in order. In order to realize a comprehensive understanding of the structure–property relation and in the meantime to provide more practical guidelines for the engineering applications of ENCs, we investigate future simulation opportunities and difficulties.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials,Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials,Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Division of Molecular and Materials Simulation, State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dapeng Cao
- Division of Molecular and Materials Simulation, State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jianxiang Shen
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials,Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials,Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
35
|
Li Y, Kröger M, Liu WK. Nanoparticle Geometrical Effect on Structure, Dynamics and Anisotropic Viscosity of Polyethylene Nanocomposites. Macromolecules 2012. [DOI: 10.1021/ma202289a] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Li
- Department of Mechanical
Engineering, Northwestern University, 2145
Sheridan Road, Evanston,
Illinois 60208-0311, United States
| | - Martin Kröger
- Department of Materials, Polymer
Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Wing Kam Liu
- Department of Mechanical
Engineering, Northwestern University, 2145
Sheridan Road, Evanston,
Illinois 60208-0311, United States
| |
Collapse
|