1
|
Ratre P, Jain B, Kumari R, Thareja S, Tiwari R, Srivastava RK, Goryacheva IY, Mishra PK. Bioanalytical Applications of Graphene Quantum Dots for Circulating Cell-Free Nucleic Acids: A Review. ACS OMEGA 2022; 7:39586-39602. [PMID: 36385871 PMCID: PMC9648045 DOI: 10.1021/acsomega.2c05414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 05/09/2023]
Abstract
Graphene quantum dots (GQDs) are carbonaceous nanodots that are natural crystalline semiconductors and range from 1 to 20 nm. The broad range of applications for GQDs is based on their unique physical and chemical properties. Compared to inorganic quantum dots, GQDs possess numerous advantages, including formidable biocompatibility, low intrinsic toxicity, excellent dispensability, hydrophilicity, and surface grating, thus making them promising materials for nanophotonic applications. Owing to their unique photonic compliant properties, such as superb solubility, robust chemical inertness, large specific surface area, superabundant surface conjugation sites, superior photostability, resistance to photobleaching, and nonblinking, GQDs have emerged as a novel class of probes for the detection of biomolecules and study of their molecular interactions. Here, we present a brief overview of GQDs, their advantages over quantum dots (QDs), various synthesis procedures, and different surface conjugation chemistries for detecting cell-free circulating nucleic acids (CNAs). With the prominent rise of liquid biopsy-based approaches for real-time detection of CNAs, GQDs-based strategies might be a step toward early diagnosis, prognosis, treatment monitoring, and outcome prediction of various non-communicable diseases, including cancers.
Collapse
Affiliation(s)
- Pooja Ratre
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Bulbul Jain
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Roshani Kumari
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Suresh Thareja
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Rajnarayan Tiwari
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Rupesh Kumar Srivastava
- Department
of Biotechnology, All India Institute of
Medical Sciences, New Delhi, 110029, India
| | - Irina Yu Goryacheva
- Department
of General and Inorganic Chemistry, Institute
of Chemistry, Saratov State University, Saratov, 410012, Russia
| | - Pradyumna Kumar Mishra
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
- E-mail: . Mobile: +91 94799 83943
| |
Collapse
|
2
|
Porous Carbon Material Derived from Steam-Exploded Poplar for Supercapacitor: Insights into Synergistic Effect of KOH and Urea on the Structure and Electrochemical Properties. MATERIALS 2022; 15:ma15082741. [PMID: 35454436 PMCID: PMC9027541 DOI: 10.3390/ma15082741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023]
Abstract
The electrochemical performance of supercapacitors using porous carbon as electrodes is strongly affected by the fabrication process of carbon material. KOH is commonly used as an activator combined with urea as a nitrogen dopant. However, the roles of KOH and urea in pore structure configuration and the electrochemical behavior of porous carbon electrodes are still ambiguous. Herein, the optimum porous carbon is obtained when KOH and urea are used simultaneously. KOH is used as a pore-forming substance, whereas urea is employed as a nitrogen source for the nitrogen doping of porous carbon, which increases its defect sites while reducing the graphitization degree. More importantly, urea also expands pores as a pore-enlarging agent, inducing interconnected porous structures. As a result, a hierarchical porous structure is formed and ascribed to the synergistic effect of KOH and urea, and the specific surface area reached 3282 m2 g−1 for sample PC800-4. The specific capacitance is 319 F g−1 at 0.5 A g−1 with excellent cycling stability over 2500 cycles. Furthermore, the symmetric supercapacitor reaches an excellent energy density of 11.6 W h kg−1 under 70.0 W kg−1 in a 6 M KOH electrolyte. Our work contributes to the rational designation of the porous carbon structure for supercapacitor applications.
Collapse
|
3
|
Yu S, Shen X, Kim JK. Beyond homogeneous dispersion: oriented conductive fillers for high κ nanocomposites. MATERIALS HORIZONS 2021; 8:3009-3042. [PMID: 34623368 DOI: 10.1039/d1mh00907a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rational design of structures for regulating the thermal conductivities (κ) of materials is critical to many components and products employed in electrical, electronic, energy, construction, aerospace, and medical applications. As such, considerable efforts have been devoted to developing polymer composites with tailored conducting filler architectures and thermal conduits for highly improved κ. This paper is dedicated to overviewing recent advances in this area to offer perspectives for the next level of future development. The limitations of conventional particulate-filled composites and the issue of percolation are discussed. In view of different directions of heat dissipation in polymer composites for different end applications, various approaches for designing the micro- and macroscopic structures of thermally conductive networks in the polymer matrix are highlighted. Methodological approaches devised to significantly ameliorate thermal conduction are categorized with respect to the pathways of heat dissipation. Future prospects for the development of thermally conductive polymer composites with modulated thermal conduction pathways are highlighted.
Collapse
Affiliation(s)
- Seunggun Yu
- Insulation Materials Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea.
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
4
|
Özmen EN, Kartal E, Turan MB, Yazıcıoğlu A, Niazi JH, Qureshi A. Graphene and carbon nanotubes interfaced electrochemical nanobiosensors for the detection of SARS-CoV-2 (COVID-19) and other respiratory viral infections: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112356. [PMID: 34579878 PMCID: PMC8339589 DOI: 10.1016/j.msec.2021.112356] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023]
Abstract
Recent COVID-19 pandemic has claimed millions of lives due to lack of a rapid diagnostic tool. Global scientific community is now making joint efforts on developing rapid and accurate diagnostic tools for early detection of viral infections to preventing future outbreaks. Conventional diagnostic methods for virus detection are expensive and time consuming. There is an immediate requirement for a sensitive, reliable, rapid and easy-to-use Point-of-Care (PoC) diagnostic technology. Electrochemical biosensors have the potential to fulfill these requirements, but they are less sensitive for sensing viruses/viral infections. However, sensitivity and performance of these electrochemical platforms can be improved by integrating carbon nanostructure, such as graphene and carbon nanotubes (CNTs). These nanostructures offer excellent electrical property, biocompatibility, chemical stability, mechanical strength and, large surface area that are most desired in developing PoC diagnostic tools for detecting viral infections with speed, sensitivity, and cost-effectiveness. This review summarizes recent advancements made toward integrating graphene/CNTs nanostructures and their surface modifications useful for developing new generation of electrochemical nanobiosensors for detecting viral infections. The review also provides prospects and considerations for extending the graphene/CNTs based electrochemical transducers into portable and wearable PoC tools that can be useful in preventing future outbreaks and pandemics.
Collapse
Affiliation(s)
- Emine Nur Özmen
- Department of Molecular Biology and Genetics, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Enise Kartal
- Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
| | - Mehmet Bora Turan
- Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
| | - Alperen Yazıcıoğlu
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle 34956, Tuzla, Istanbul, Turkey
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey.
| | - Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
5
|
Fe@B 6H 6 aggregates: from simple building blocks to graphene analogue. J Mol Model 2021; 27:273. [PMID: 34471937 DOI: 10.1007/s00894-021-04887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
We suggest the possibility to build graphene analogue with the planar hexacoordinate wheel-type Fe@B6H6 cluster as the building block through studying theoretically the geometry, stability, and electron structure of its dimer and trimer as well as the dimerization of the two trimers. Employing the dehydrogenation route to polymerization, we can obtain the hexagonal boron sheet that are partly and uniformly filled by Fe atoms in the center of the holes, achieving uniform chemical doping and a very large hexagonal-hole density. Thus, we may offer a novel cluster-assembled material for experimental chemists to construct graphene analogue.
Collapse
|
6
|
Liu J, Qin H, Liu Y. Multi-Scale Structure-Mechanical Property Relations of Graphene-Based Layer Materials. MATERIALS 2021; 14:ma14164757. [PMID: 34443279 PMCID: PMC8399220 DOI: 10.3390/ma14164757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Pristine graphene is one of the strongest materials known in the world, and may play important roles in structural and functional materials. In order to utilize the extraordinary mechanical properties in practical engineering structures, graphene should be assembled into macroscopic structures such as graphene-based papers, fibers, foams, etc. However, the mechanical properties of graphene-based materials such as Young’s modulus and strength are 1–2 orders lower than those of pristine monolayer graphene. Many efforts have been made to unveil the multi-scale structure–property relations of graphene-based materials with hierarchical structures spanning the nanoscale to macroscale, and significant achievements have been obtained to improve the mechanical performance of graphene-based materials through composition and structure optimization across multi-scale. This review aims at summarizing the currently theoretical, simulation, and experimental efforts devoted to the multi-scale structure–property relation of graphene-based layer materials including defective monolayer graphene, nacre-like and laminar nanostructures of multilayer graphene, graphene-based papers, fibers, aerogels, and graphene/polymer composites. The mechanisms of mechanical property degradation across the multi-scale are discussed, based on which some multi-scale optimization strategies are presented to further improve the mechanical properties of graphene-based layer materials. We expect that this review can provide useful insights into the continuous improvement of mechanical properties of graphene-based layer materials.
Collapse
Affiliation(s)
- Jingran Liu
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Huasong Qin
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
- Correspondence: (H.Q.); (Y.L.)
| | - Yilun Liu
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Correspondence: (H.Q.); (Y.L.)
| |
Collapse
|
7
|
Comparative trends and molecular analysis on the surfactant-assisted dispersibility of 1D and 2D carbon materials: Multiwalled nanotubes vs graphene nanoplatelets. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Zhang H, Wu Y, Yang F, Dong H, Bian Y, Jia H, Xie X, Zhang J. Using Cellulose Nanocrystal as Adjuvant to Improve the Dispersion Ability of Multilayer Graphene in Aqueous Suspension. Front Bioeng Biotechnol 2021; 9:638744. [PMID: 33644025 PMCID: PMC7902505 DOI: 10.3389/fbioe.2021.638744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cellulose nanocrystal (CNC) has been applied in various fields due to its nano-structure, high aspect ratio, specific surface area and modulus, and abundance of hydroxy groups. In this work, CNC suspensions with different concentrations (0.4, 0.6, and 0.8%) were used as the adjuvant to improve the dispersion ability of multilayer graphene (MLG) in aqueous suspension, which is easy to be aggregated by van der Waals force between layers. In addition, N-methyl-2-pyrrolidone, ethanol, and ultrapure water were used as control groups. Zeta potential analysis and Fourier transform infrared spectroscopy showed that the stability of MLG/CNC has met the requirement, and the combination of CNC and MLG was stable in aqueous suspension. Results from transmission electron microscopy, Fourier transform infrared spectroscopy, and absorbance showed that MLG had a better dispersion performance in CNC suspensions, compared to the other solutions. Raman spectrum analysis showed that the mixtures of 1.0 wt% MLG with 0.4% CNC had the least defects and fewer layers of MLG. In addition, it is found that CNC suspension with 0.8% concentration showed the highest ability to disperse 1.0 wt% MLG with the most stable performance in suspension. Overall, this work proved the potential application of CNC as adjuvant in the field of graphene nanomaterials.
Collapse
Affiliation(s)
- Haiqiao Zhang
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yan Wu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Feng Yang
- Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology, Beijing, China
| | - Huiling Dong
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yuqing Bian
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Huanliang Jia
- Dehua Tubao New Decoration Material Co., Ltd., Huzhou, China
| | - Xuqin Xie
- Dehua Tubao New Decoration Material Co., Ltd., Huzhou, China
| | - Jilei Zhang
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
9
|
Min Y, Leng F, Machado BF, Lecante P, Roblin P, Martinez H, Theussl T, Casu A, Falqui A, Barcenilla M, Coco S, Martínez BMI, Martin N, Axet MR, Serp P. 2D and 3D Ruthenium Nanoparticle Covalent Assemblies for Phenyl Acetylene Hydrogenation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanyuan Min
- CNRS, LCC (Laboratoire de Chimie de Coordination) 31077 Toulouse Cedex 4 France
| | - Faqiang Leng
- CNRS, LCC (Laboratoire de Chimie de Coordination) 31077 Toulouse Cedex 4 France
| | - Bruno F. Machado
- LSRE‐LCM Chemical Engineering Department, Faculty of Engineering University of Porto, Rua Dr. Roberto Frias s/n 4200‐465 Porto Portugal
| | - Pierre Lecante
- Centre d'élaboration des matériaux et d'études structurales UPR CNRS 8011 29 Rue Jeanne‐Marvig, BP 4347 31055 Toulouse France
| | - Pierre Roblin
- Laboratoire de Génie Chimique and Fédération de Recherche FERMAT 31030 Toulouse France
| | - Hervé Martinez
- Université de Pau et des Pays de l'Adour 64053 Pau France
| | - Thomas Theussl
- Visualization Core Lab King Abdullah University of Science and Technology (KAUST) 23955‐6900 Thuwal Saudi Arabia
| | - Alberto Casu
- Biological and Environmental Sciences and Engineering (BESE) Division, NABLA Lab King Abdullah University of Science and Technology (KAUST) 23955‐6900 Thuwal Saudi Arabia
| | - Andrea Falqui
- Biological and Environmental Sciences and Engineering (BESE) Division, NABLA Lab King Abdullah University of Science and Technology (KAUST) 23955‐6900 Thuwal Saudi Arabia
| | - María Barcenilla
- IU CINQUIMA/Química Inorgánica Facultad de Ciencias Universidad de Valladolid 47071 Valladolid Spain
| | - Silverio Coco
- IU CINQUIMA/Química Inorgánica Facultad de Ciencias Universidad de Valladolid 47071 Valladolid Spain
| | - Beatriz María Illescas Martínez
- Departamento Química Orgánica Facultad C. C. Químicas Universidad Complutense de Madrid Av. Complutense s/n, 28040 Madrid Spain
- Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Nazario Martin
- Departamento Química Orgánica Facultad C. C. Químicas Universidad Complutense de Madrid Av. Complutense s/n, 28040 Madrid Spain
- Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - M. Rosa Axet
- CNRS, LCC (Laboratoire de Chimie de Coordination) 31077 Toulouse Cedex 4 France
| | - Philippe Serp
- CNRS, LCC (Laboratoire de Chimie de Coordination) 31077 Toulouse Cedex 4 France
| |
Collapse
|
10
|
Effect of residual electrolyte on dispersion stability of graphene in aqueous solution. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Shellard PM, Srisubin T, Hartmann M, Butcher J, Fei F, Cox H, McNamara TP, McArdle T, Shepherd AM, Jacobs RMJ, Waigh TA, Flitsch SL, Blanford CF. A versatile route to edge-specific modifications to pristine graphene by electrophilic aromatic substitution. JOURNAL OF MATERIALS SCIENCE 2020; 55:10284-10302. [PMID: 32536720 PMCID: PMC7266800 DOI: 10.1007/s10853-020-04662-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Electrophilic aromatic substitution produces edge-specific modifications to CVD graphene and graphene nanoplatelets that are suitable for specific attachment of biomolecules.
Collapse
Affiliation(s)
- Philippa M. Shellard
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Thunyaporn Srisubin
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Mirja Hartmann
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Joseph Butcher
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Fan Fei
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Henry Cox
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Photon Science Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester, M13 9PL UK
| | - Thomas P. McNamara
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Trevor McArdle
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Ashley M. Shepherd
- Chemical Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Robert M. J. Jacobs
- Chemical Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Thomas A. Waigh
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Photon Science Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester, M13 9PL UK
| | - Sabine L. Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| |
Collapse
|
12
|
Han B, Song J, Hu T, Ye H, Xu L. High thermal conductivity in polydimethylsiloxane composite with vertically oriented graphene nanosheets by liquid-phase exfoliation. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Grajek H, Jonik J, Witkiewicz Z, Wawer T, Purchała M. Applications of Graphene and Its Derivatives in Chemical Analysis. Crit Rev Anal Chem 2019; 50:445-471. [PMID: 31702380 DOI: 10.1080/10408347.2019.1653165] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this review, the applications of graphene and its derivatives in the chemical analysis have been described. The properties of graphene materials which are essential for their use in chemical and biochemical analysis are characterized. The materials are used in sensors and biosensors, in electrochemistry, in chromatography and in the sample preparation techniques. Chemical and electrochemical sensors containing graphene materials are useful devices for detecting some chemical and biochemical compounds. Chromatographic columns for HPLC with graphene containing stationary phases may be used for separation of polar and nonpolar components of some specific mixtures. Graphene materials could be successfully employed during sample preparation for analysis with SPE, magnetic SPE, and SPME techniques. HighlightsThe review of the applications of graphene (G) and its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO), in chemical and biochemical analysis is proposed.The electron donor-acceptor and proton donor-acceptor interactions for the graphene based materials - analytes systems and their impact on the analysis results are discussed, particularly: i) in electrochemistry,ii) in chromatography,iii) in modern sample preparation techniquesiv) in sensors of different types.The essence of the thermal stability and the nomenclature of the graphene based materials in their different applications in chemical systems of different classes was discussed (and suggested).The benefits of using SPME fibers with immobilized graphene materials have been presented in detail.
Collapse
Affiliation(s)
- H Grajek
- Department of Advanced Technology and Chemistry, Institute of Chemistry, Military University of Technology, Warsaw, Poland
| | - J Jonik
- Department of Advanced Technology and Chemistry, Institute of Chemistry, Military University of Technology, Warsaw, Poland
| | - Z Witkiewicz
- Department of Advanced Technology and Chemistry, Institute of Chemistry, Military University of Technology, Warsaw, Poland
| | - T Wawer
- Department of Advanced Technology and Chemistry, Institute of Chemistry, Military University of Technology, Warsaw, Poland
| | - M Purchała
- Department of Advanced Technology and Chemistry, Institute of Chemistry, Military University of Technology, Warsaw, Poland
| |
Collapse
|
14
|
Ye H, Han B, Chen H, Xu L. The liquid-exfoliation of graphene assisted with hyperbranched polyethylene-g-polyhedral oligomeric silsesquioxane copolymer and its thermal property in polydimethylsiloxane nanocomposite. NANOTECHNOLOGY 2019; 30:355602. [PMID: 31067519 DOI: 10.1088/1361-6528/ab200b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermal interface materials with high thermal conductivity are essential to transfer the redundant heat and improve the reliability of integrated circuits. Here we reported high thermal conductivity in polydimethylsiloxane (PDMS) nanocomposite incorporated with few-layer graphene, which was exfoliated in chloroform with assistance of hyperbranched polyethylene-g-polyhedral oligomeric silsesquioxane copolymer (HBPE@POSS) as the stabilizer. In order to improve the compatibility and enhance the thermal property, the HBPE@POSS copolymer was synthesized via the unique chain walking polymerization mechanism, which subsequently was applied to exfoliate natural graphite into few-layer graphene in low-boiling-point solvents. The majority of resultant nanosheets with low defects was verified with lateral dimension of ~400 nm and the thickness of ~1.6 nm, which is attributed to the presence of CH-π noncovalent interaction between graphene and HBPE@POSS copolymer. The graphene nanoplates (GNPs)/polydimethylsiloxane (PDMS) nanocomposites were prepared by solution casting, in which graphene nanofillers were dispersed uniformly in the matrix due to good compatibility between PDMS and oligomeric silsesquioxane segments adsorbed on the nanosheets. The thermal conductivity of 4.0 wt% GNPs/PDMS nanocomposite reaches 0.93 W m-1 K-1, which is 400% higher than that of pure PDMS. The PDMS nanocomposite incorporated with few-layer graphene exhibits a promising prospect in thermal interface for thermal management of electronic devices, and sheds a light on the interfacial improvement mechanism of thermal conductivity for polymer composite.
Collapse
Affiliation(s)
- Huijian Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Surfactants with aromatic headgroups for optimizing properties of graphene/natural rubber latex composites (NRL): Surfactants with aromatic amine polar heads. J Colloid Interface Sci 2019; 545:184-194. [PMID: 30878784 DOI: 10.1016/j.jcis.2019.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The compatibility of surfactants and graphene surfaces can be improved by increasing the number of aromatic groups in the surfactants. Including aniline in the structure may improve the compatibility between surfactant and graphene further still. Surfactants can be modified by incorporating aromatic groups in the hydrophobic chains or hydrophilic headgroups. Therefore, it is of interest to investigate the effects of employing anilinium based surfactants to disperse graphene nanoplatelets (GNPs) in natural rubber latex (NRL) for the fabrication of electrically conductive nanocomposites. EXPERIMENTS New graphene-philic surfactants carrying aromatic moieties in the hydrophilic headgroups and hydrophobic tails were synthesized by swapping the traditional sodium counterion with anilinium. 1H NMR spectroscopy was used to characterize the surfactants. These custom-made surfactants were used to assist the dispersion of GNPs in natural rubber latex matrices for the preparation of conductive nanocomposites. The properties of nanocomposites with the new anilinium surfactants were compared with commercial sodium surfactant sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and the previously synthesized aromatic tri-chain sodium surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate). Structural properties of the nanocomposites were studied using Raman spectroscopy, field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between total number of aromatic groups in the surfactant molecular structure and nanocomposite properties. The self-assembly structure of surfactants in aqueous systems and GNP dispersions was assessed using small-angle neutron scattering (SANS). FINDINGS Among these different surfactants, the anilinium version of TC3Ph3 namely TC3Ph3-AN (anilinium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly efficient for dispersing GNPs in the NRL matrices, increasing electrical conductivity eleven orders of magnitude higher than the neat rubber latex. Comparisons between the sodium and anilinium surfactants show significant differences in the final properties of the nanocomposites. In general, the strategy of increasing the number of surfactant-borne aromatic groups by incorporating anilinium ions in surfactant headgroups appears to be effective.
Collapse
|
16
|
Jia M, Cui L, Peng F, Li Y, Xu L, Jin X. Self-assembly design and synthesis of pulp fiber–graphene for flexible and high performance electrode based on polyacrylamide. NEW J CHEM 2019. [DOI: 10.1039/c9nj00169g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and template-free method for the fabrication of modified pulp fiber (PF)–polyacrylamide (PAM)–graphene (RGO) composite electrodes was developed.
Collapse
Affiliation(s)
- Mengying Jia
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Key Laboratory of Lignocellulosic Chemistry
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- 35 Qinghua East Road
| | - Linlin Cui
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Key Laboratory of Lignocellulosic Chemistry
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- 35 Qinghua East Road
| | - Feng Peng
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Key Laboratory of Lignocellulosic Chemistry
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- 35 Qinghua East Road
| | - Yue Li
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Key Laboratory of Lignocellulosic Chemistry
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- 35 Qinghua East Road
| | - Lanshu Xu
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Key Laboratory of Lignocellulosic Chemistry
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- 35 Qinghua East Road
| | - Xiaojuan Jin
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Key Laboratory of Lignocellulosic Chemistry
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- 35 Qinghua East Road
| |
Collapse
|
17
|
Phiri J, Johansson LS, Gane P, Maloney TC. Co-exfoliation and fabrication of graphene based microfibrillated cellulose composites - mechanical and thermal stability and functional conductive properties. NANOSCALE 2018; 10:9569-9582. [PMID: 29745947 DOI: 10.1039/c8nr02052c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The excellent functional properties of graphene and micro-nanofibrillated cellulose (MNFC) offer plenty of possibilities for wide ranging applications in combination as a composite material. In this study, flexible graphene/microfibrillated cellulose (MFC) composite films were prepared by a simple method of co-exfoliation of graphite in an MFC suspension by high-shear exfoliation. We show that pristine graphene, without any chemical treatment, was homogeneously dispersed in the MFC matrix, and the produced composites showed enhanced thermal, electrical and mechanical properties compared to a non-co-exfoliated control. The film properties were studied by XPS, XRD, Raman, SEM, FTIR, TGA, nitrogen sorption, UV-vis spectroscopy, optical and formation analysis tests. At 0.5 wt% loading, the specific surface area of graphene/MFC composites increased from 218 to 273 m2 g-1 while the tensile strength and Young's modulus for the graphene/MFC composites increased by 33% and 28% respectively. Thermal stability was enhanced by 22% at 9 wt% loading and the composites showed a high electrical conductivity of 2.4 S m-1. This simple method for the fabrication of graphene/MFC composites with enhanced controlled functional properties can prove to be industrially beneficial, and is expected to open up a new route for novel potential applications of materials based largely on renewable resources.
Collapse
Affiliation(s)
- Josphat Phiri
- School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland.
| | | | | | | |
Collapse
|
18
|
Rational design of aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical conductivity. J Colloid Interface Sci 2018; 516:34-47. [DOI: 10.1016/j.jcis.2018.01.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/14/2023]
|
19
|
Ganguly S, Ray D, Das P, Maity PP, Mondal S, Aswal VK, Dhara S, Das NC. Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release. ULTRASONICS SONOCHEMISTRY 2018; 42:212-227. [PMID: 29429663 DOI: 10.1016/j.ultsonch.2017.11.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 06/08/2023]
Abstract
Nanohybrid hydrogels based on pristine graphene with enhanced toughness and dual responsive drug delivery feature is opening a new era for smart materials. Here pristine graphene hydrogels are synthesized by in situ free radical polymerization where graphene platelets are the nanobuiliding blocks to withstand external stress and shows reversible ductility. Such uniqueness is a mere reflection of rubber-like elasticity on the hydrogels. These nanobuilding blocks serve also the extensive physisorption which enhances the physical crosslinking inside the gel matrix. Besides the pH-responsive drug release features, these hydrogels are also implemented as a pulsatile drug delivery device. The electric responsive drug release behaviours are noticed and hypothesized by the formation of conducting network in the polyelectrolytic hydrogel matrix. The hydrogels are also tested as good biocompatibility and feasible cell-attachment during live-dead cell adhesion study. The drug release characteristics can also be tuned by adjusting the conducting filler loading into the gel matrix. As of our knowledge, this type of hydrogels with rubber-like consistency, high mechanical property, tunable and dual responsive drug delivery feature and very good human cell compatible is the first to report.
Collapse
Affiliation(s)
- Sayan Ganguly
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Poushali Das
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Priti Prasanna Maity
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Subhadip Mondal
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Narayan Ch Das
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India; School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|
20
|
Solubility study on the surfactants functionalized reduced graphene oxide. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.071] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Zhao J, Liu Y, Cheng J, Wu S, Wang Z, Hu H, Zhou C. Reinforced polystyrene via solvent-exfoliated graphene. POLYM INT 2017. [DOI: 10.1002/pi.5435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Zhao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics; Qingdao University of Science and Technology; Qingdao China
| | - Yanlei Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics; Qingdao University of Science and Technology; Qingdao China
| | - Jianglong Cheng
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics; Qingdao University of Science and Technology; Qingdao China
| | - Shengming Wu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics; Qingdao University of Science and Technology; Qingdao China
| | - Zhaobo Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics; Qingdao University of Science and Technology; Qingdao China
| | - Haiqing Hu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics; Qingdao University of Science and Technology; Qingdao China
| | - Chunhua Zhou
- School of Chemistry and Chemical Engineering; University of Jinan; Jinan PR China
| |
Collapse
|
22
|
|
23
|
Haghnegahdar M, Naderi G, Ghoreishy MHR. Microstructure and Mechanical Properties of Nanocomposite Based on Polypropylene/Ethylene Propylene Diene Monomer/Graphene. INT POLYM PROC 2017. [DOI: 10.3139/217.3286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Polypropylene (PP)/ethylene propylene diene monomer (EPDM)/ graphene nanosheets (GNs) were compounded by a two-step melt mixing process via an internal mixer (brabender plasticorder). The effect of GNs, graphene oxide (GOSs) and graphene oxide functionalized with PP chains (PP-g-GOSs) on various blend properties were investigated. Wide X-ray diffraction (WAXD) patterns and transmission electron microscopy (TEM) images of the prepared nanocomposites revealed that the nanofillers were mostly dispersed into the PP phase and the dispersion state of GNs was improved with functionalization of graphene. SEM photomicrographs indicated that rubber droplets were distributed in the PP phase and a reduction of the dispersed EPDM droplet size was observed most likely due to increase in the viscosity of the PP-phase during melt mixing. The effects of nanofillers on thermal, mechanical and rheological properties were reported, and the obtained results were discussed in terms of morphology, state of dispersion and distribution of the nanofillers within the PP matrix. As for the mechanical properties, an improvement of 56% in tensile modulus and 48% in tensile strength, while 72% reduction in elongation at break was observed. The DMTA results revealed that the nanocomposites based on PP-g-GOSs had lower damping behavior and the intensity of the loss factor decreased by increasing the GNs content. These results indicate the presence of a strong interfacial interaction between the nanoplatelets and the polymer matrix.
Collapse
Affiliation(s)
- M. Haghnegahdar
- Department of Polymer Processing , Iran Polymer and Petrochemical Institute, Tehran , Iran
| | - G. Naderi
- Department of Polymer Processing , Iran Polymer and Petrochemical Institute, Tehran , Iran
| | - M. H. R. Ghoreishy
- Department of Polymer Processing , Iran Polymer and Petrochemical Institute, Tehran , Iran
| |
Collapse
|
24
|
Wee BH, Wu TF, Hong JD. Facile and Scalable Synthesis Method for High-Quality Few-Layer Graphene through Solution-Based Exfoliation of Graphite. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4548-4557. [PMID: 28094493 DOI: 10.1021/acsami.6b11771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we describe a facile and scalable method for preparing defect-free graphene sheets exfoliated from graphite using the positively charged polyelectrolyte precursor poly(p-phenylenevinylene) (PPV-pre) as a stabilizer in an aqueous solution. The graphene exfoliated by PPV-pre was apparently stabilized in the solution as a form of graphene/PPV-pre (denoted to GPPV-pre), which remains in a homogeneous dispersion over a year. The thickness values of 300 selected 76% GPPV-pre flakes ranged from 1 to 10 nm, corresponding to between one and a few layers of graphene in the lateral dimensions of 1 to 2 μm. Furthermore, this approach was expected to yield a marked decrease in the density of defects in the electronic conjugation of graphene compared to that of graphene oxide (GO) obtained by Hummers' method. The positively charged GPPV-pre was employed to fabricate a poly(ethylene terephthalate) (PET) electrode layer-by-layer with negatively charged GO, yielding (GPPV-pre/GO)n film electrode. The PPV-pre and GO in the (GPPV-pre/GO)n films were simultaneously converted using hydroiodic acid vapor to fully conjugated PPV and reduced graphene oxide (RGO), respectively. The electrical conductivity of (GPPV/RGO)23 multilayer films was 483 S/cm, about three times greater than that of the (PPV/RGO)23 multilayer films (166 S/cm) comprising RGO (prepared by Hummers method). Furthermore, the superior electrical properties of GPPV were made evident, when comparing the capacitive performances of two supercapacitor systems; (polyaniline PANi/RGO)30/(GPPV/RGO)23/PET (volumetric capacitance = 216 F/cm3; energy density = 19 mWh/cm3; maximum power density = 498 W/cm3) and (PANi/RGO)30/(PPV/RGO)23/PET (152 F/cm3; 9 mWh/cm3; 80 W/cm3).
Collapse
Affiliation(s)
- Boon-Hong Wee
- Department of Chemistry, Research Institute of Natural Sciences, Incheon National University , 119 Academy-ro, Yeonsu-gu, Incheon, 21022, Republic of Korea
| | - Tong-Fei Wu
- Department of Chemistry, Research Institute of Natural Sciences, Incheon National University , 119 Academy-ro, Yeonsu-gu, Incheon, 21022, Republic of Korea
| | - Jong-Dal Hong
- Department of Chemistry, Research Institute of Natural Sciences, Incheon National University , 119 Academy-ro, Yeonsu-gu, Incheon, 21022, Republic of Korea
| |
Collapse
|
25
|
Vacchi IA, Ménard-Moyon C, Bianco A. Chemical Functionalization of Graphene Family Members. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2016-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Thanks to their outstanding physicochemical properties, graphene and its derivatives are interesting nanomaterials with a high potential in several fields. Graphene, graphene oxide, and reduced graphene oxide, however, differ partially in their characteristics due to their diverse surface composition. Those differences influence the chemical reactivity of these materials. In the following chapter the reactivity and main functionalization reactions performed on graphene, graphene oxide, and reduced graphene oxide are discussed. A part is also dedicated to the main analytical techniques used for characterization of these materials. Functionalization of graphene and its derivatives is highly important to modulate their characteristics and design graphene-based conjugates with novel properties. Functionalization can be covalent by forming strong and stable bonds with the graphene surface, or non-covalent via π–π, electrostatic, hydrophobic, and/or van der Waals interactions. Both types of functionalization are currently exploited.
Collapse
|
26
|
Qiao M, Wu S, Wang Y, Ran Q. Brush-like block copolymer synthesized via RAFT polymerization for graphene oxide aqueous suspensions. RSC Adv 2017. [DOI: 10.1039/c6ra27480c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report for the first time the applications of brush-like block copolymer in the dispersant of graphene oxide aqueous suspensions.
Collapse
Affiliation(s)
- Min Qiao
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
- State Key Laboratory of High Performance Civil Engineering Materials
| | - Shishan Wu
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Yanwei Wang
- State Key Laboratory of High Performance Civil Engineering Materials
- Jiangsu Sobute New Material Co. Ltd
- Nanjing
- China
| | - Qianping Ran
- State Key Laboratory of High Performance Civil Engineering Materials
- Jiangsu Sobute New Material Co. Ltd
- Nanjing
- China
| |
Collapse
|
27
|
Parviz D, Irin F, Shah SA, Das S, Sweeney CB, Green MJ. Challenges in Liquid-Phase Exfoliation, Processing, and Assembly of Pristine Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8796-8818. [PMID: 27546380 DOI: 10.1002/adma.201601889] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/28/2016] [Indexed: 05/08/2023]
Abstract
Recent developments in the exfoliation, dispersion, and processing of pristine graphene (i.e., non-oxidized graphene) are described. General metrics are outlined that can be used to assess the quality and processability of various "graphene" products, as well as metrics that determine the potential for industrial scale-up. The pristine graphene production process is categorized from a chemical engineering point of view with three key steps: i) pretreatment, ii) exfoliation, and iii) separation. How pristine graphene colloidal stability is distinct from the exfoliation step and is dependent upon graphene interactions with solvents and dispersants are extensively reviewed. Finally, the challenges and opportunities of using pristine graphene as nanofillers in polymer composites, as well as as building blocks for macrostructure assemblies are summarized in the context of large-scale production.
Collapse
Affiliation(s)
- Dorsa Parviz
- Artie McFerrin Department of Chemical Engineering, College Station, TX, 77843, USA
| | - Fahmida Irin
- Artie McFerrin Department of Chemical Engineering, College Station, TX, 77843, USA
| | - Smit A Shah
- Artie McFerrin Department of Chemical Engineering, College Station, TX, 77843, USA
| | - Sriya Das
- Artie McFerrin Department of Chemical Engineering, College Station, TX, 77843, USA
| | - Charles B Sweeney
- Artie McFerrin Department of Chemical Engineering, College Station, TX, 77843, USA
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, College Station, TX, 77843, USA.
| |
Collapse
|
28
|
Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem Rev 2016; 116:5464-519. [DOI: 10.1021/acs.chemrev.5b00620] [Citation(s) in RCA: 1608] [Impact Index Per Article: 178.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Jitendra N. Tiwari
- Center
for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - K. Christian Kemp
- Center
for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Jason A. Perman
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University in Olomouc, 17 Listopadu
1192/12, 771 46 Olomouc, Czech Republic
| | - Athanasios B. Bourlinos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University in Olomouc, 17 Listopadu
1192/12, 771 46 Olomouc, Czech Republic
| | - Kwang S. Kim
- Center
for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Radek Zboril
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University in Olomouc, 17 Listopadu
1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
29
|
Liu G, Komatsu N. Efficient and Scalable Production of 2D Material Dispersions using Hexahydroxytriphenylene as a Versatile Exfoliant and Dispersant. Chemphyschem 2016; 17:1557-67. [DOI: 10.1002/cphc.201600187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Gang Liu
- Graduate School of Human and Environmental Studies; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
30
|
Xue Z, Yin B, Li M, Rao H, Wang H, Zhou X, Liu X, Lu X. Direct electrodeposition of well dispersed electrochemical reduction graphene oxide assembled with nickel oxide nanocomposite and its improved electrocatalytic activity toward 2, 4, 6-Trinitrophenol. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Perumal S, Park KT, Lee HM, Cheong IW. PVP-b-PEO block copolymers for stable aqueous and ethanolic graphene dispersions. J Colloid Interface Sci 2015; 464:25-35. [PMID: 26606378 DOI: 10.1016/j.jcis.2015.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 11/30/2022]
Abstract
The ability to disperse pristine (unfunctionalized) graphene is important for various applications, coating, nanocomposites, and energy related systems. Herein we report that amphiphilic copolymers of poly(4-vinyl pyridine)-block-poly(ethylene oxide) (PVP-b-PEO) are able to disperse graphene with high concentrations about 2.6mg/mL via sonication and centrifugation. Ethanolic and aqueous highly-ordered pyrolytic graphite (HOPG) dispersions with block copolymers were prepared and they were compared with the dispersions stabilized by P-123 Pluronic® (P123) and poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO) synthesized. Transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, Raman and UV-visible spectroscopic studies confirmed that PVP-b-PEO block copolymers are better stabilizers for HOPG graphene than P123 and PS-b-PEO. X-ray photoelectron spectroscopy and force-distance (F-d) curve analyses revealed that the nitrogen of vinyl pyridine plays a vital role in better attractive interaction with surface of graphene sheet. Thermogravimetric analysis showed that larger amount of PVP-b-PEO was adsorbed onto graphene with longer poly(4-vinyl pyridine) (PVP) block length and in aqueous medium, respectively, and which was consistent with electrical conductivity decreases. This study presents the dispersion efficiency of graphene using PVP-b-PEO varies substantially depending on the lengths of their hydrophobic (PVP) domains.
Collapse
Affiliation(s)
- Suguna Perumal
- Department of Applied Chemistry, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu 702-701, South Korea
| | - Kyung Tae Park
- Department of Applied Chemistry, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu 702-701, South Korea
| | - Hyang Moo Lee
- Department of Applied Chemistry, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu 702-701, South Korea
| | - In Woo Cheong
- Department of Applied Chemistry, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu 702-701, South Korea.
| |
Collapse
|
32
|
Wei Y, Sun Z. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.10.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Parviz D, Metzler SD, Das S, Irin F, Green MJ. Tailored Crumpling and Unfolding of Spray-Dried Pristine Graphene and Graphene Oxide Sheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2661-2668. [PMID: 25641827 DOI: 10.1002/smll.201403466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/29/2014] [Indexed: 06/04/2023]
Abstract
For the first time, pristine graphene can be controllably crumpled and unfolded. The mechanism for graphene is radically different than that observed for graphene oxide; a multifaced crumpled, dimpled particle morphology is seen for pristine graphene in contrast to the wrinkled, compressed surface of graphene oxide particles, showing that surface chemistry dictates nanosheet interactions during the crumpling process. The process demonstrated here utilizes a spray-drying technique to produce droplets of aqueous graphene dispersions and induce crumpling through rapid droplet evaporation. For the first time, the gradual dimensional transition of 2D graphene nanosheets to a 3D crumpled morphology in droplets is directly observed; this is imaged by a novel sample collection device inside the spray dryer itself. The degree of folding can be tailored by altering the capillary forces on the dispersed sheets during evaporation. It is also shown that the morphology of redispersed crumpled graphene powder can be controlled by solvent selection. This process is scalable, with the ability to rapidly process graphene dispersions into powders suitable for a variety of engineering applications.
Collapse
Affiliation(s)
- Dorsa Parviz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Shane D Metzler
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sriya Das
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Fahmida Irin
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Micah J Green
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
34
|
Adsorption and removal of graphene dispersants. J Colloid Interface Sci 2015; 446:282-9. [PMID: 25681785 DOI: 10.1016/j.jcis.2015.01.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 11/24/2022]
Abstract
We demonstrate three different techniques (dialysis, vacuum filtration, and spray drying) for removal of dispersants from liquid-exfoliated graphene. We evaluate these techniques for elimination of dispersants from both the bulk liquid phase and from the graphene surface. Thermogravimetric analysis (TGA) confirms dispersant removal by these treatments. Vacuum filtration (driving by convective mass transfer) is the most effective method of dispersant removal, regardless of the type of dispersant, removing up to ∼95 wt.% of the polymeric dispersant with only ∼7.4 wt.% decrease in graphene content. Dialysis also removes a significant fraction (∼70 wt.% for polymeric dispersants) of un-adsorbed dispersants without disturbing the dispersion quality. Spray drying produces re-dispersible, crumpled powder samples and eliminates much of the unabsorbed dispersants. We also show that there is no rapid desorption of dispersants from the graphene surface. In addition, electrical conductivity measurements demonstrate conductivities one order of magnitude lower for graphene drop-cast films (where excess dispersants are present) than for vacuum filtered films, confirming poor inter-sheet connectivity when excess dispersants are present.
Collapse
|
35
|
Zhuang X, Mai Y, Wu D, Zhang F, Feng X. Two-dimensional soft nanomaterials: a fascinating world of materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:403-27. [PMID: 25155302 DOI: 10.1002/adma.201401857] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/26/2014] [Indexed: 05/05/2023]
Abstract
The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, Bx Cy Nz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
| | | | | | | | | |
Collapse
|
36
|
Bari R, Parviz D, Khabaz F, Klaassen CD, Metzler SD, Hansen MJ, Khare R, Green MJ. Liquid phase exfoliation and crumpling of inorganic nanosheets. Phys Chem Chem Phys 2015; 17:9383-93. [DOI: 10.1039/c5cp00294j] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experiment and simulation demonstrate the polymer-assisted dispersion of inorganic 2D layered nanomaterials such as boron nitride nanosheets (BNNSs), MoS2 nanosheets, and WS2 nanosheets; spray drying can be used to alter such nanosheets into a crumpled morphology.
Collapse
Affiliation(s)
- Rozana Bari
- Department of Chemical Engineering
- Texas Tech University
- Lubbock
- USA
| | - Dorsa Parviz
- Artie McFerrin Department of Chemical Engineering
- Texas A&M University
- College Station
- USA
| | - Fardin Khabaz
- Department of Chemical Engineering
- Texas Tech University
- Lubbock
- USA
| | | | - Shane D. Metzler
- Department of Chemical Engineering
- Texas Tech University
- Lubbock
- USA
| | | | - Rajesh Khare
- Department of Chemical Engineering
- Texas Tech University
- Lubbock
- USA
| | - Micah J. Green
- Artie McFerrin Department of Chemical Engineering
- Texas A&M University
- College Station
- USA
| |
Collapse
|
37
|
Spearman SS, Irin F, Rivero IV, Green MJ, Abidi N. Effect of dsDNA wrapped single-walled carbon nanotubes on the thermal and mechanical properties of polycaprolactone and polyglycolide fiber blend composites. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Bari R, Tamas G, Irin F, Aquino AJ, Green MJ, Quitevis EL. Direct exfoliation of graphene in ionic liquids with aromatic groups. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.09.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Parviz D, Yu Z, Hedden RC, Green MJ. Designer stabilizer for preparation of pristine graphene/polysiloxane films and networks. NANOSCALE 2014; 6:11722-11731. [PMID: 25156756 DOI: 10.1039/c4nr01431f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution viaπ-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m(-1) after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 °C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite.
Collapse
Affiliation(s)
- Dorsa Parviz
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
| | | | | | | |
Collapse
|
40
|
Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3515-35. [PMID: 25340186 DOI: 10.1002/smll.201303000] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This is a review on recent developments in the field of conductive nanomaterials and their application in printed electronics, with particular emphasis on inkjet printing of ink formulations based on metal nanoparticles, carbon nanotubes, and graphene sheets. The review describes the basic properties of conductive nanomaterials suitable for printed electronics (metal nanoparticles, carbon nanotubes, and graphene), their stabilization in dispersions, formulations of conductive inks, and obtaining conductive patterns by using various sintering methods. Applications of conductive nanomaterials for electronic devices (transparent electrodes, metallization of solar cells, RFID antennas, TFTs, and light emitting devices) are also briefly reviewed.
Collapse
|
41
|
Han S, Zhai W, Chen G, Wang X. Morphology and thermoelectric properties of graphene nanosheets enwrapped with polypyrrole. RSC Adv 2014. [DOI: 10.1039/c4ra04003a] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Notley SM, Evans DR. Aqueous processing of graphene-polymer hybrid thin film nano-composites and gels. Adv Colloid Interface Sci 2014; 209:196-203. [PMID: 24811424 DOI: 10.1016/j.cis.2014.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/03/2014] [Accepted: 04/13/2014] [Indexed: 12/13/2022]
Abstract
Research into the structure, properties and applications of graphene has moved at a tremendous pace over the past few years. This review describes one aspect of this research, that of the incorporation of graphene particles with a range of polymers to create novel hybrid materials with increased functionality such as improved conductance, increased strength and introduced biocompatibility or cytotoxicity. This review focuses on dispersing graphene in polymer matrices, both insulating and conducting. Additionally, a brief discussion of carbon based platelet production methods is given in order to provide context on the subsequent use of this family of materials such as graphene, graphene oxide (GO) and reduced graphene oxide (rGO) incorporated into polymeric thin films.
Collapse
Affiliation(s)
- Shannon M Notley
- Dept of Chemistry and Biotechnology, Faculty of Engineering, Science and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Drew R Evans
- Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
43
|
Mallakpour S, Zadehnazari A. Rapid and green functionalization of multi-walled carbon nanotubes by glucose: structural investigation and the preparation of dopamine-based poly(amide-imide) composites. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1205-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Mahmoudi T, Rho WY, Yang HY, Silva SRP, Hahn YB. Highly conductive and dispersible graphene and its application in P3HT-based solar cells. Chem Commun (Camb) 2014; 50:8705-8. [DOI: 10.1039/c4cc03692a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Eigler S, Hirsch A. Chemistry with Graphene and Graphene Oxide-Challenges for Synthetic Chemists. Angew Chem Int Ed Engl 2014; 53:7720-38. [DOI: 10.1002/anie.201402780] [Citation(s) in RCA: 635] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 11/12/2022]
|
46
|
Eigler S, Hirsch A. Chemie an Graphen und Graphenoxid - eine Herausforderung für Synthesechemiker. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402780] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Synergistic Effect of Hybrid Montmorillonite-reduced Graphene Oxide as Dual Filler for Improving the Mechanical Properties of PVA Composites by a One-step Procedure. ACTA POLYM SIN 2014. [DOI: 10.3724/sp.j.1105.2014.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
|
49
|
Molecular dynamics simulation of adsorption of pyrene–polyethylene glycol onto graphene. J Colloid Interface Sci 2014; 418:66-73. [DOI: 10.1016/j.jcis.2013.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 11/22/2022]
|
50
|
Mallakpour S, Zadehnazari A. A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly(amide–imide) composites. J SOLID STATE CHEM 2014. [DOI: 10.1016/j.jssc.2013.12.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|