1
|
Gayathri R, Angela VM, Devibala P, Imran PM, Nagarajan S. Tailoring the Resistive Switching WORM Memory Behavior of Functionalized Bis(triphenylamine). ACS APPLIED MATERIALS & INTERFACES 2023; 15:23546-23556. [PMID: 37130268 DOI: 10.1021/acsami.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To better understand the structure-property relationship and the significance of the donor-acceptor (D-A) system in resistive memory devices, a series of new organic small molecules with A-π-D-π-A- and D-π-D-π-D-based architecture comprising a bis(triphenylamine) core unit and ethynyl-linked electron donor/acceptor arms were designed and synthesized. The devices with A-π-D-π-A structures exhibited write-once-read-many memory behavior with a good retention time of 1000 s while those based on D-π-D-π-D molecules presented only conductor property. The compound with nitrophenyl substitution resulted in a higher ON/OFF current ratio of 104, and the fluorophenyl substitution exhibited the lowest threshold voltage of -1.19 V. Solubility of the compounds in common organic solvents suggests that they are promising candidates for economic solution-processable techniques. Density functional theory calculations were used to envision the frontier molecular orbitals and to support the proposed resistive switching mechanisms. It is inferred that the presence of donor/acceptor substituents has a significant impact on the highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels of the molecules, which affects their memory-switching behavior and thus suggests that a D-A architecture is ideal for memory device resistance switching characteristics.
Collapse
Affiliation(s)
- Ramesh Gayathri
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Varghese Maria Angela
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Panneerselvam Devibala
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | | | - Samuthira Nagarajan
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu, Thiruvarur 610 005, India
| |
Collapse
|
2
|
Nan J, Fan Y, Hu K, Gao Y, Chen F, Shen Y, Yang Y. Regulating the electrical resistive switching behaviors of polyimides through different steric hindrance substituents on 2,7-position of tetraphenyl fluorene diamines moieties. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221090670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three novel polyimides (PI(TPF-Br BPDA), PI(TPF-Ph BPDA), and PI(TPF-Ph-OMe BPDA)) with tetraphenyl fluorene (TPF) were synthesized and tested. The laboratorial results showed that the constructed electronic devices exhibited different memory behaviors due to the different steric hindrance substituents (bromine atom, phenyl, and 3,5-dimethoxyphenyl) in 2,7-position of TPF molecule. The memorizers based on PI(TPF-Br BPDA) and PI(TPF-Ph BPDA) presented volatile dynamic random access memory (DRAM) feature with turn-on voltages of −2.39 and +1.45 V, as same as −1.71 and +1.74 V, separately. However, the PI(TPF-Ph-OMe BPDA) based apparatus exhibited non-volatile write-once read-many-times memory (WORM) behavior with turn-on voltage of −1.13 V, due to the more charge traps of 3,5-dimethoxyphenyl moieties and higher dipole moment. The switching mechanism was verified by quantum simulation of energy level, electrostatic potential (ESP) surface and dipole moment. These results indicated that the electrical memory performance of the synthesized TPF-based PIs could be adjusted by modifying the electron donor structure.
Collapse
Affiliation(s)
- Junyi Nan
- Applied Chemistry Department, College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, China
| | - Yingtao Fan
- Applied Chemistry Department, College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, China
| | - Kaitai Hu
- Applied Chemistry Department, College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, China
| | - Yang Gao
- Applied Chemistry Department, College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, China
| | - Fangyuan Chen
- Applied Chemistry Department, College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, China
| | - Yingzhong Shen
- Applied Chemistry Department, College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, China
| | - Yanhua Yang
- School of Chemistry and Chemical Engineering, Kunming University, Yunnan, China
| |
Collapse
|
3
|
Yen HJ, Liou GS. Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Xiao X, Zhou F, Jiang J, Chen H, Wang L, Chen D, Xu Q, Lu J. Highly efficient polymerization via sulfur(vi)-fluoride exchange (SuFEx): novel polysulfates bearing a pyrazoline–naphthylamide conjugated moiety and their electrical memory performance. Polym Chem 2018. [DOI: 10.1039/c7py02042b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two polysulfates (PolyTPP-NI and CPTPP-NI) were synthesized by a SuFEx click reaction, and their memory devices show Flash behaviors.
Collapse
Affiliation(s)
- Xiong Xiao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Feng Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Jun Jiang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Haifeng Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Lihua Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Dongyun Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Qingfeng Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Jianmei Lu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| |
Collapse
|
5
|
Guo D, Sun Z, Wang S, Bai X, Xu L, Yang Q, Xin Y, Zheng R, Ma D, Zhao X, Wang C. Synthesis and optical and electrochemical memory properties of fluorene–triphenylamine alternating copolymer. RSC Adv 2017. [DOI: 10.1039/c6ra28154k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A fluorene–triphenylamine copolymer (PF–TPA) was designed and synthesized under Suzuki coupling reaction conditions in this work. It exhibited a typical electrical conductance switching behavior and non-volatile flash memory effects.
Collapse
|
6
|
Tsai CL, Lee TM, Liou GS. Novel solution-processable functional polyimide/ZrO2 hybrids with tunable digital memory behaviors. Polym Chem 2016. [DOI: 10.1039/c6py00841k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The resulting PI hybrid films exhibited electrically programmable digital memory properties from DRAM, SRAM to WORM with a high ON/OFF current ratio by controlling the content of ZrO2 from 0 to 30 wt%.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Functional Polymeric Materials Laboratory
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
| | - Tzong-Ming Lee
- Material and Chemical Research Laboratories
- Industrial Technology Research Institute
- Hsinchu 31040
| | - Guey-Sheng Liou
- Functional Polymeric Materials Laboratory
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
| |
Collapse
|
7
|
Ren D, Li H, Zhu Y, Bai X. Electrically bistable and non-volatile memory devices based on p-toluenesulfonic-doped poly(triphenylamine). RSC Adv 2016. [DOI: 10.1039/c6ra01410k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The devices are bi-directionally switchable and have non-volatile WORM memory characteristics. They were used as promising candidates in security and data protection applications.
Collapse
Affiliation(s)
- Decai Ren
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry Engineering and Materials Science
- Heilongjiang University
- Harbin 150080
| | - Hongling Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry Engineering and Materials Science
- Heilongjiang University
- Harbin 150080
| | - Yu Zhu
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry Engineering and Materials Science
- Heilongjiang University
- Harbin 150080
| | - Xuduo Bai
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry Engineering and Materials Science
- Heilongjiang University
- Harbin 150080
| |
Collapse
|
8
|
Huang TT, Tsai CL, Hsiao SH, Liou GS. Linkage and donor–acceptor effects on resistive switching memory devices of 4-(N-carbazolyl)triphenylamine-based polymers. RSC Adv 2016. [DOI: 10.1039/c6ra02349e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In order to gain deeper insight about the linkage effect and donor–acceptor effect on memory behavior (from DRAM to WORM), 4-(N-carbazolyl)triphenylamine-based polyimides and polyamides were synthesized and their memory behaviours were investigated.
Collapse
Affiliation(s)
- Tzu-Tien Huang
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei
- Taiwan 10617
| | - Chia-Liang Tsai
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei
- Taiwan 10617
| | - Sheng-Huei Hsiao
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei
- Taiwan 10608
| | - Guey-Sheng Liou
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei
- Taiwan 10617
| |
Collapse
|
9
|
Solution-processable triarylamine-based high-performance polymers for resistive switching memory devices. Polym J 2015. [DOI: 10.1038/pj.2015.87] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Zhou Y, Han ST, Yan Y, Zhou L, Huang LB, Zhuang J, Sonar P, Roy VAL. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends. Sci Rep 2015; 5:10683. [PMID: 26029856 PMCID: PMC4450595 DOI: 10.1038/srep10683] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/17/2015] [Indexed: 11/25/2022] Open
Abstract
Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Physics and Materials Science City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Su-Ting Han
- Department of Physics and Materials Science City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Yan Yan
- Department of Physics and Materials Science City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Li Zhou
- Department of Physics and Materials Science City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Long-Biao Huang
- Department of Physics and Materials Science City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Jiaqing Zhuang
- Department of Physics and Materials Science City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, QLD 4001, Australia
| | - V. A. L. Roy
- Department of Physics and Materials Science City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| |
Collapse
|
11
|
AGRAWAL SEEMA, NARULA ANUDEEPKUMAR. Synthesis and characterization of heat-resistant and soluble poly(amide-imide)s from unsymmetrical dicarboxylic acid containing 2-(triphenyl phosphoranylidene) moiety and various aromatic diamines. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0830-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ko YG, Hahm SG, Murata K, Kim YY, Ree BJ, Song S, Michinobu T, Ree M. New Fullerene-Based Polymers and Their Electrical Memory Characteristics. Macromolecules 2014. [DOI: 10.1021/ma5021402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong-Gi Ko
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| | - Suk Gyu Hahm
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| | - Kimie Murata
- Department
of Organic and Polymeric Materials and Global Edge Institute, Tokyo Institute of Technology, 2-12-1-S8-24 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Young Yong Kim
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| | - Brian J. Ree
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| | - Sungjin Song
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| | - Tsuyoshi Michinobu
- Department
of Organic and Polymeric Materials and Global Edge Institute, Tokyo Institute of Technology, 2-12-1-S8-24 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Moonhor Ree
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
13
|
Shi L, Jia N, Kong L, Qi S, Wu D. Tuning Resistive Switching Memory Behavior from Non-volatile to Volatile by Phenoxy Linkages in Soluble Polyimides Containing Carbazole-Tethered Triazole Groups. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Shi
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Nanfang Jia
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Lushi Kong
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Shengli Qi
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- Changzhou Institute of Advanced Materials; Beijing University of Chemical Technology; Changzhou 213164 Jiangsu China
| | - Dezhen Wu
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
14
|
Shi L, Tian G, Ye H, Qi S, Wu D. Volatile static random access memory behavior of an aromatic polyimide bearing carbazole-tethered triphenylamine moieties. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.12.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Jung J, Kim H, Ree M. Self-assembly of novel lipid-mimicking brush polymers in nanoscale thin films. SOFT MATTER 2014; 10:701-708. [PMID: 24838200 DOI: 10.1039/c3sm52263f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of well-defined poly(oxy(11-phosphorylcholineundecylthiomethyl)ethylene-ran-oxy(n-dodecylthiomethyl)ethylene) (PECH-PCm: m = 0-100 mol% phosphorylcholine (PC)) polymers were used to prepare nanoscale thin films that were characterized by synchrotron X-ray reflectivity (XR) analysis. The quantitative XR analysis provided structural insights into the PECH-PCm thin films. The PECH-PC0 polymer film formed a well-ordered in-plane oriented molecular multibilayer structure, whose individual layers consisted of two sublayers. One sublayer was composed of the fully extended backbones and inner part of the bristles, exhibiting a relatively low electron density, whereas the other sublayer was composed of a bilayer of the outer parts of the bristles without interdigitation. The PECH-PC100 polymer film also formed a well-ordered in-plane oriented molecular multibilayer structure, the individual layers of which were composed of four sublayers rather than two. The bristles in the layer were interdigitated in part via the zwitterionic interactions of the PC end groups. Surprisingly, regardless of the copolymer composition, the PECH-PCm random copolymer molecules in the thin films self-assembled to form a multilayered structure that resembled the structure formed by the PECH-PC100 polymer. These properties have not been observed in other conventional random brush copolymer films. The remarkable multibilayer structures originated from the zwitterionic PC end groups and their favorable interactions and interdigitated structures, which overcame any negative contributions caused by the heterogeneity of the bristles. The unique self-assembly properties of the PECH-PCm polymers always provide a PC-rich surface. The PECH-PCm random copolymers successfully mimicked the molecular bilayer structures formed by natural lipids.
Collapse
Affiliation(s)
- Jungwoon Jung
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea.
| | | | | |
Collapse
|
16
|
Chen CJ, Wu JH, Liou GS. Thermally stable and high ON/OFF ratio non-volatile memory devices based on poly(triphenylamine) with pendent PCBM. Chem Commun (Camb) 2014; 50:4335-7. [DOI: 10.1039/c3cc48569b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Kurosawa T, Yu AD, Higashihara T, Chen WC, Ueda M. Inducing a high twisted conformation in the polyimide structure by bulky donor moieties for the development of non-volatile memory. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Chen CJ, Hu YC, Liou GS. Linkage effect on the memory behavior of sulfonyl-containing aromatic polyether, polyester, polyamide, and polyimide. Chem Commun (Camb) 2013; 49:2536-8. [PMID: 23423191 DOI: 10.1039/c3cc40411k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfonyl-containing aromatic polymers DSPE, DSPET, DSPA, and DSPI consisting of a triphenylamine moiety were synthesized and the memory behavior was investigated. By choosing the suitable linkage between the electron donor and acceptor, tunable memory properties (from insulator to different retention time SRAM) could be achieved.
Collapse
Affiliation(s)
- Chih-Jung Chen
- Functional Polymeric Materials Laboratory, Institute of Polymer Science and Engineering, National Taiwan University, 1 Roosevelt Road, 4th Sec., Taipei 10617, Taiwan
| | | | | |
Collapse
|
19
|
|
20
|
Chen CJ, Hu YC, Liou GS. Linkage and acceptor effects on diverse memory behavior of triphenylamine-based aromatic polymers. Polym Chem 2013. [DOI: 10.1039/c3py00500c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Chen CJ, Hu YC, Liou GS. Electrically bistable memory devices based on poly(triphenylamine)–PCBM hybrids. Chem Commun (Camb) 2013; 49:2804-6. [DOI: 10.1039/c3cc40693h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|