1
|
Gao T, Yachi T, Shi X, Sato R, Sato C, Yonamine Y, Kanie K, Misawa H, Ijiro K, Mitomo H. Ultrasensitive Surface-Enhanced Raman Scattering Platform for Protein Detection via Active Delivery to Nanogaps as a Hotspot. ACS NANO 2024; 18:21593-21606. [PMID: 39093951 PMCID: PMC11328179 DOI: 10.1021/acsnano.4c09578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is an attractive technique in molecular detection with high sensitivity and label-free characteristics. However, its use in protein detection is limited by the large volume of proteins, hindering its approach to the narrow spaces of hotspots. In this study, we fabricated a Au nanoTriangle plate Array on Gel (AuTAG) as an SERS substrate by attaching a Au nanoTriangle plate (AuNT) arrangement on a thermoresponsive hydrogel surface. The AuTAG acts as an actively tunable plasmonic device, on which the interparticle distance is altered by controlling temperature via changes in hydrogel volume. Further, we designed a Gel Filter Trapping (GFT) method as an active protein delivery strategy based on the characteristics of hydrogels, which can absorb water and separate biopolymers through their three-dimensional (3D) polymer networks. On the AuTAGs, fabricated with AuNTs modified with charged surface ligands to prevent the nonspecific adsorption of analytes to particles, the GFT method helped the delivery of proteins to hotspot areas on the AuNT arrangement. This combination of a AuTAG substrate and the GFT method enables ultrahigh sensitivity for protein detection by SERS up to a single-molecule level as well as a wide quantification concentration range of 6 orders due to their geometric advantages.
Collapse
Affiliation(s)
- Tianxu Gao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takehiro Yachi
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Xu Shi
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Rina Sato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Chikara Sato
- AIST Tsukuba central 7, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
- Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Division of Immune Homeostasis, Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi 173-8610, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kiyoshi Kanie
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Sendai 980-8577, Japan
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 770-8530, Japan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Matsumoto M, Tada T, Asoh TA, Shoji T, Nishiyama T, Horibe H, Katsumoto Y, Tsuboi Y. Dynamics of the Phase Separation in a Thermoresponsive Polymer: Accelerated Phase Separation of Stereocontrolled Poly( N, N-diethylacrylamide) in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13690-13696. [PMID: 30362770 DOI: 10.1021/acs.langmuir.8b02848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We studied the dependence on tacticity of the dynamic phase separation behavior of thermoresponsive poly( N, N-diethylacrylamide) (PDEA) in an aqueous solution. Using a laser temperature-jump technique combined with transient photometry, we determined the time constants of the phase separation and found that both atactic and isotactic-rich PDEAs had fast and slow phase separation processes (τfast and τslow). The fast process (τfast) was independent of the tacticity, irrespective of the concentration. On the other hand, the slow process had a strong dependence on the tacticity. We found the slow phase separation process got considerably faster with increasing isotacticity in dilute solutions. This effect due to the tacticity of the PDEA is totally different from that of poly( N-isopropylacrylamide) and can be explained on the basis of the difference between the hydrophobicity of atactic PDEA and that of isotactic-rich PDEA.
Collapse
Affiliation(s)
| | - Takanori Tada
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| | | | | | | | | | - Yukiteru Katsumoto
- Department of Chemistry, Faculty of Science , Fukuoka University , 8-19-1 Nanakuma , Jonan-ku, Fukuoka 814-0180 , Japan
| | | |
Collapse
|