1
|
Bacterioferritin nanocage: Structure, biological function, catalytic mechanism, self-assembly and potential applications. Biotechnol Adv 2022; 61:108057. [DOI: 10.1016/j.biotechadv.2022.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022]
|
2
|
Siebenmorgen C, Zu G, Keskin D, van Rijn P. Dynamic Covalent Cross-linked Nanogel-stabilized Pickering Emulsion for Responsive Microstructures. Macromol Rapid Commun 2022; 43:e2100766. [PMID: 35436017 DOI: 10.1002/marc.202100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Designing new dynamic matrices in combination with a highly diverse material formation approach as Pickering emulsionsprovides us with the tools to engineer innovative dynamic porous microstructures in a highly controllable fashion. Here we make use of nanogels (nGels), which exhibits dynamic covalent cross-linking capabilities, as surface stabilizing agents in view of their highly controllable physiochemical properties. The method provides successful formation of dynamic covalent cross-linked hydrogel microstructures based on ketone and amine functionalized nGels using Pickering emulsions was shown. In this system we incorporated a pH-triggerable responsive behavior. The physiochemical properties of the resulting microstructure can be further tailored by modifying the intramolecular interactions at the interface, making this systems interesting for a wide range of applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Clio Siebenmorgen
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Guangyue Zu
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Damla Keskin
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
3
|
Schwieters MS, Mathieu-Gaedke M, Westphal M, Dalpke R, Dirksen M, Qi D, Grull M, Bick T, Taßler S, Sauer DF, Bonn M, Wendler P, Hellweg T, Beyer A, Gölzhäuser A, Schwaneberg U, Glebe U, Böker A. Protein Nanopore Membranes Prepared by a Simple Langmuir-Schaefer Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102975. [PMID: 34643032 DOI: 10.1002/smll.202102975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Filtration through membranes with nanopores is typically associated with high transmembrane pressures and high energy consumption. This problem can be addressed by reducing the respective membrane thickness. Here, a simple procedure is described to prepare ultrathin membranes based on protein nanopores, which exhibit excellent water permeance, two orders of magnitude superior to comparable, industrially applied membranes. Furthermore, incorporation of either closed or open protein nanopores allows tailoring the membrane's ion permeability. To form such membranes, the transmembrane protein ferric hydroxamate uptake protein component A (FhuA) or its open-pore variant are assembled at the air-water interface of a Langmuir trough, compressed to a dense film, crosslinked by glutaraldehyde, and transferred to various support materials. This approach allows to prepare monolayer or multilayer membranes with a very high density of protein nanopores. Freestanding membranes covering holes up to 5 μm in diameter are visualized by atomic force microscopy (AFM), helium ion microscopy, and transmission electron microscopy. AFM PeakForce quantitative nanomechanical property mapping (PeakForce QNM) demonstrates remarkable mechanical stability and elastic properties of freestanding monolayer membranes with a thickness of only 5 nm. The new protein membrane can pave the way to energy-efficient nanofiltration.
Collapse
Affiliation(s)
- Magnus S Schwieters
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - Maria Mathieu-Gaedke
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Michael Westphal
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Raphael Dalpke
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Maxim Dirksen
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Daizong Qi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marco Grull
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Thomas Bick
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Stephanie Taßler
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Gif-Sur-Yvette, Saint-Aubin, 91192, France
| | - Daniel F Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Petra Wendler
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - André Beyer
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| |
Collapse
|
4
|
|
5
|
Zhang S, Bramski J, Tutus M, Pietruszka J, Böker A, Reinicke S. A Biocatalytically Active Membrane Obtained from Immobilization of 2-Deoxy-d-ribose-5-phosphate Aldolase on a Porous Support. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34441-34453. [PMID: 31448894 DOI: 10.1021/acsami.9b12029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aldol reactions play an important role in organic synthesis, as they belong to the class of highly beneficial C-C-linking reactions. Aldol-type reactions can be efficiently and stereoselectively catalyzed by the enzyme 2-deoxy-d-ribose-5-phosphate aldolase (DERA) to gain key intermediates for pharmaceuticals such as atorvastatin. The immobilization of DERA would open the opportunity for a continuous operation mode which gives access to an efficient, large-scale production of respective organic intermediates. In this contribution, we synthesize and utilize DERA/polymer conjugates for the generation and fixation of a DERA bearing thin film on a polymeric membrane support. The conjugation strongly increases the tolerance of the enzyme toward the industrial relevant substrate acetaldehyde while UV-cross-linkable groups along the conjugated polymer chains provide the opportunity for covalent binding to the support. First, we provide a thorough characterization of the conjugates followed by immobilization tests on representative, nonporous cycloolefinic copolymer supports. Finally, immobilization on the target supports constituted of polyacrylonitrile (PAN) membranes is performed, and the resulting enzymatically active membranes are implemented in a simple membrane module setup for the first assessment of biocatalytic performance in the continuous operation mode using the combination hexanal/acetaldehyde as the substrate.
Collapse
Affiliation(s)
- Shuhao Zhang
- Chair of Polymer Materials and Polymer Technologies , University of Potsdam, Institute of Chemistry , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam , Germany
| | - Julia Bramski
- Institute of Bioorganic Chemistry , Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst , 52426 Jülich , Germany
| | | | - Jörg Pietruszka
- Institute of Bioorganic Chemistry , Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst , 52426 Jülich , Germany
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Alexander Böker
- Chair of Polymer Materials and Polymer Technologies , University of Potsdam, Institute of Chemistry , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam , Germany
| | | |
Collapse
|
6
|
Sun Z, Glebe U, Charan H, Böker A, Wu C. Enzyme–Polymer Conjugates as Robust Pickering Interfacial Biocatalysts for Efficient Biotransformations and One‐Pot Cascade Reactions. Angew Chem Int Ed Engl 2018; 57:13810-13814. [DOI: 10.1002/anie.201806049] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Zhiyong Sun
- Institute of MicrobiologyTechnische Universität Dresden Zellescher Weg 20b 01217 Dresden Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstrasse 69 14476 Potsdam-Golm Germany
| | - Himanshu Charan
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstrasse 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und PolymertechnologieUniversity of Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstrasse 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und PolymertechnologieUniversity of Potsdam 14476 Potsdam-Golm Germany
| | - Changzhu Wu
- Danish Institute for Advanced Study (DIAS) and Department of Physics, Chemistry and PharmacyUniversity of Southern Denmark Campusvej 55 5230 Odense Denmark
| |
Collapse
|
7
|
Sun Z, Glebe U, Charan H, Böker A, Wu C. Enzyme–Polymer Conjugates as Robust Pickering Interfacial Biocatalysts for Efficient Biotransformations and One‐Pot Cascade Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiyong Sun
- Institute of MicrobiologyTechnische Universität Dresden Zellescher Weg 20b 01217 Dresden Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstrasse 69 14476 Potsdam-Golm Germany
| | - Himanshu Charan
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstrasse 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und PolymertechnologieUniversity of Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstrasse 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und PolymertechnologieUniversity of Potsdam 14476 Potsdam-Golm Germany
| | - Changzhu Wu
- Danish Institute for Advanced Study (DIAS) and Department of Physics, Chemistry and PharmacyUniversity of Southern Denmark Campusvej 55 5230 Odense Denmark
| |
Collapse
|
8
|
Zhang S, Bisterfeld C, Bramski J, Vanparijs N, De Geest BG, Pietruszka J, Böker A, Reinicke S. Biocatalytically Active Thin Films via Self-Assembly of 2-Deoxy-d-ribose-5-phosphate Aldolase-Poly(N-isopropylacrylamide) Conjugates. Bioconjug Chem 2017; 29:104-116. [PMID: 29182313 DOI: 10.1021/acs.bioconjchem.7b00645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
2-Deoxy-d-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. However, substrate as well as product inhibition requires a more-sophisticated process design for the synthesis of these motifs. One way to do so is to the couple aldehyde conversion with transport processes, which, in turn, would require an immobilization of the enzyme within a thin film that can be deposited on a membrane support. Consequently, we developed a fabrication process for such films that is based on the formation of DERA-poly(N-isopropylacrylamide) conjugates that are subsequently allowed to self-assemble at an air-water interface to yield the respective film. In this contribution, we discuss the conjugation conditions, investigate the interfacial properties of the conjugates, and, finally, demonstrate a successful film formation under the preservation of enzymatic activity.
Collapse
Affiliation(s)
- Shuhao Zhang
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.,Polymer Materials and Polymer Technologies, University of Potsdam , 14476, Potsdam-Golm, Germany
| | - Carolin Bisterfeld
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany
| | - Julia Bramski
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany
| | - Nane Vanparijs
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany.,IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , 52425 Jülich, Germany
| | - Alexander Böker
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.,Polymer Materials and Polymer Technologies, University of Potsdam , 14476, Potsdam-Golm, Germany
| | - Stefan Reinicke
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
9
|
|
10
|
Charan H, Glebe U, Anand D, Kinzel J, Zhu L, Bocola M, Garakani TM, Schwaneberg U, Böker A. Nano-thin walled micro-compartments from transmembrane protein-polymer conjugates. SOFT MATTER 2017; 13:2866-2875. [PMID: 28352880 DOI: 10.1039/c6sm02520j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The high interfacial activity of protein-polymer conjugates has inspired their use as stabilizers for Pickering emulsions, resulting in many interesting applications such as synthesis of templated micro-compartments and protocells or vehicles for drug and gene delivery. In this study we report, for the first time, the stabilization of Pickering emulsions with conjugates of a genetically modified transmembrane protein, ferric hydroxamate uptake protein component A (FhuA). The lysine residues of FhuA with open pore (FhuA ΔCVFtev) were modified to attach an initiator and consequently controlled radical polymerization (CRP) carried out via the grafting-from technique. The resulting conjugates of FhuA ΔCVFtev with poly(N-isopropylacrylamide) (PNIPAAm) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA), the so-called building blocks based on transmembrane proteins (BBTP), have been shown to engender larger structures. The properties such as pH-responsivity, temperature-responsivity and interfacial activity of the BBTP were analyzed using UV-Vis spectrophotometry and pendant drop tensiometry. The BBTP were then utilized for the synthesis of highly stable Pickering emulsions, which could remain non-coalesced for well over a month. A new UV-crosslinkable monomer was synthesized and copolymerized with NIPAAm from the protein. The emulsion droplets, upon crosslinking of polymer chains, yielded micro-compartments. Fluorescence microscopy proved that these compartments are of micrometer scale, while cryo-scanning electron microscopy and scanning force microscopy analysis yielded a thickness in the range of 11.1 ± 0.6 to 38.0 ± 18.2 nm for the stabilizing layer of the conjugates. Such micro-compartments would prove to be beneficial in drug delivery applications, owing to the possibility of using the channel of the transmembrane protein as a gate and the smart polymer chains as trigger switches to tune the behavior of the capsules.
Collapse
Affiliation(s)
- Himanshu Charan
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Charan H, Kinzel J, Glebe U, Anand D, Garakani TM, Zhu L, Bocola M, Schwaneberg U, Böker A. Grafting PNIPAAm from β-barrel shaped transmembrane nanopores. Biomaterials 2016; 107:115-23. [PMID: 27614163 DOI: 10.1016/j.biomaterials.2016.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
Abstract
The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.
Collapse
Affiliation(s)
- Himanshu Charan
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476, Potsdam-Golm, Germany
| | - Julia Kinzel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Deepak Anand
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Tayebeh Mirzaei Garakani
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany; DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Leilei Zhu
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Marco Bocola
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany; DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany.
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
13
|
Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 2016; 45:6213-6249. [DOI: 10.1039/c6cs00177g] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein cages have become essential tools in bionanotechnology due to their well-defined, monodisperse, capsule-like structure. Combining them with synthetic polymers greatly expands their application, giving rise to novel nanomaterials fore.g.drug-delivery, sensing, electronic devices and for uses as nanoreactors.
Collapse
Affiliation(s)
- Martin Rother
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Martin G. Nussbaumer
- Wyss Institute for Biologically Inspired Engineering
- Harvard University
- Cambridge
- USA
| | - Kasper Renggli
- Department of Biosystems Science and Engineering
- ETH Zürich
- 4058 Basel
- Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| |
Collapse
|
14
|
Jutz G, van Rijn P, Santos Miranda B, Böker A. Ferritin: a versatile building block for bionanotechnology. Chem Rev 2015; 115:1653-701. [PMID: 25683244 DOI: 10.1021/cr400011b] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Günther Jutz
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Lehrstuhl für Makromolekulare Materialien und Oberflächen, RWTH Aachen University , Forckenbeckstrasse 50, D-52056 Aachen, Germany
| | | | | | | |
Collapse
|
15
|
Wu L, Glebe U, Böker A. Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym Chem 2015. [DOI: 10.1039/c5py00525f] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes recent progress in surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- DWI – Leibniz Institute for Interactive Materials e.V
- Lehrstuhl für Makromolekulare Materialien und Oberflächen
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie
- Universität Potsdam
| |
Collapse
|
16
|
|