1
|
Coralli I, Giuri D, Spada L, Ortolani J, Mazzocchetti L, Tomasini C, Stevens LA, Snape CE, Fabbri D. Valorization Strategies in CO 2 Capture: A New Life for Exhausted Silica-Polyethylenimine. Int J Mol Sci 2023; 24:14415. [PMID: 37833862 PMCID: PMC10572583 DOI: 10.3390/ijms241914415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
The search for alternative ways to give a second life to materials paved the way for detailed investigation into three silica-polyethylenimine (Si-PEI) materials for the purpose of CO2 adsorption in carbon capture and storage. A solvent extraction procedure was investigated to recover degraded PEIs and silica, and concomitantly, pyrolysis was evaluated to obtain valuable chemicals such as alkylated pyrazines. An array of thermal (TGA, Py-GC-MS), mechanical (rheology), and spectroscopical (ATR-FTIR, 1H-13C-NMR) methods were applied to PEIs extracted with methanol to determine the relevant physico-chemical features of these polymers when subjected to degradation after use in CO2 capture. Proxies of degradation associated with the plausible formation of urea/carbamate moieties were revealed by Py-GC-MS, NMR, and ATR-FTIR. The yield of alkylpyrazines estimated by Py-GC-MS highlighted the potential of exhausted PEIs as possibly valuable materials in other applications.
Collapse
Affiliation(s)
- Irene Coralli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Demetra Giuri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Lorenzo Spada
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Jacopo Ortolani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (J.O.); (L.M.)
| | - Laura Mazzocchetti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (J.O.); (L.M.)
| | - Claudia Tomasini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Lee A. Stevens
- Faculty of Engineering, University of Nottingham, The Energy Technologies Building, Nottingham NG7 2TU, UK; (L.A.S.); (C.E.S.)
| | - Colin E. Snape
- Faculty of Engineering, University of Nottingham, The Energy Technologies Building, Nottingham NG7 2TU, UK; (L.A.S.); (C.E.S.)
| | - Daniele Fabbri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| |
Collapse
|
2
|
Ioannidis I, Pashalidis I, Arkas M. Actinide Ion (Americium-241 and Uranium-232) Interaction with Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels. Gels 2023; 9:690. [PMID: 37754371 PMCID: PMC10530514 DOI: 10.3390/gels9090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
The binding of actinide ions (Am(III) and U(VI)) in aqueous solutions by hybrid silica-hyperbranched poly(ethylene imine) nanoparticles (NPs) and xerogels (XGs) has been studied by means of batch experiments at different pH values (4, 7, and 9) under ambient atmospheric conditions. Both materials present relatively high removal efficiency at pH 4 and pH 7 (>70%) for Am(III) and U(VI). The lower removal efficiency for the nanoparticles is basically associated with the compact structure of the nanoparticles and the lower permeability and access to active amine groups compared to xerogels, and the negative charge of the radionuclide species is formed under alkaline conditions (e.g., UO2(CO3)34- and Am(CO3)2-). Generally, the adsorption process is relatively slow due to the very low radionuclide concentrations used in the study and is basically governed by the actinide diffusion from the aqueous phase to the solid surface. On the other hand, adsorption is favored with increasing temperature, assuming that the reaction is endothermic and entropy-driven, which is associated with increasing randomness at the solid-liquid interphase upon actinide adsorption. To the best of our knowledge, this is the first study on hybrid silica-hyperbranched poly(ethylene imine) nanoparticle and xerogel materials used as adsorbents for americium and uranium at ultra-trace levels. Compared to other adsorbent materials used for binding americium and uranium ions, both materials show far higher binding efficiency. Xerogels could remove both actinides even from seawater by almost 90%, whereas nanoparticles could remove uranium by 80% and americium by 70%. The above, along with their simple derivatization to increase the selectivity towards a specific radionuclide and their easy processing to be included in separation technologies, could make these materials attractive candidates for the treatment of radionuclide/actinide-contaminated water.
Collapse
Affiliation(s)
- Ioannis Ioannidis
- Laboratory of Radioanalytical and Environmental Chemistry, Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678 Nicosia, Cyprus;
| | - Ioannis Pashalidis
- Laboratory of Radioanalytical and Environmental Chemistry, Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678 Nicosia, Cyprus;
| | - Michael Arkas
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| |
Collapse
|
3
|
Arkas M, Bompotis T, Giannakopoulos K, Favvas EP, Arvanitopoulou M, Arvanitopoulos K, Arvanitopoulos L, Kythreoti G, Vardavoulias M, Giannakoudakis DA, Castellsagués L, Soto González SM. Hybrid Silica Xerogel and Titania/Silica Xerogel Dispersions Reinforcing Hydrophilicity and Antimicrobial Resistance of Leathers. Gels 2023; 9:685. [PMID: 37754366 PMCID: PMC10530134 DOI: 10.3390/gels9090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Four leather substrates from different animals were treated by dispersions containing hydrophilic composite silica-hyperbranched poly(ethylene imine) xerogels. Antimicrobial activity was introduced by incorporating silver nanoparticles and/or benzalkonium chloride. The gel precursor solutions were also infused before gelation to titanium oxide powders typically employed for induction of self-cleaning properties. The dispersions from these biomimetically premade xerogels integrate environmentally friendly materials with short coating times. Scanning electron microscopy (SEM) provided information on the powder distribution onto the leathers. Substrate and coating composition were estimated by infrared spectroscopy (IR) and energy-dispersive X-ray spectroscopy (EDS). Surface hydrophilicity and water permeability were assessed by water-contact angle experiments. The diffusion of the leather's initial components and xerogel additives into the water were measured by Ultraviolet-Visible (UV-Vis) spectroscopy. Protection against GRAM- bacteria was tested for Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae against GRAM+ bacteria for Staphylococcus aureus and Enterococcus faecalis and against fungi for Candida albicans. Antibiofilm capacity experiments were performed against Staphylococcus aureus, Klebsiella pneumoniae, Enterococcus faecalis, and Candida albicans. The application of xerogel dispersions proved an adequate and economically feasible alternative to the direct gel formation into the substrate's pores for the preparation of leathers intended for medical uses.
Collapse
Affiliation(s)
- Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (T.B.); (K.G.); (E.P.F.); (M.A.)
| | - Theofanis Bompotis
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (T.B.); (K.G.); (E.P.F.); (M.A.)
| | - Konstantinos Giannakopoulos
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (T.B.); (K.G.); (E.P.F.); (M.A.)
| | - Evangelos P. Favvas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (T.B.); (K.G.); (E.P.F.); (M.A.)
| | - Marina Arvanitopoulou
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (T.B.); (K.G.); (E.P.F.); (M.A.)
| | | | | | - Georgia Kythreoti
- Institute of Bioscience and Applications, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece;
- Department of Science and Mathematics, School of Liberal Arts and Sciences, The American College of Greece, Deree, Gravias 6, 15342 Athens, Greece
| | | | | | - Laura Castellsagués
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, 08036 Barcelona, Spain; (L.C.); (S.M.S.G.)
| | - Sara Maria Soto González
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, 08036 Barcelona, Spain; (L.C.); (S.M.S.G.)
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Arkas M, Giannakopoulos K, Favvas EP, Papageorgiou S, Theodorakopoulos GV, Giannoulatou A, Vardavoulias M, Giannakoudakis DA, Triantafyllidis KS, Georgiou E, Pashalidis I. Comparative Study of the U(VI) Adsorption by Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111794. [PMID: 37299697 DOI: 10.3390/nano13111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Two different silica conformations (xerogels and nanoparticles), both formed by the mediation of dendritic poly (ethylene imine), were tested at low pHs for problematic uranyl cation sorption. The effect of crucial factors, i.e., temperature, electrostatic forces, adsorbent composition, accessibility of the pollutant to the dendritic cavities, and MW of the organic matrix, was investigated to determine the optimum formulation for water purification under these conditions. This was attained with the aid of UV-visible and FTIR spectroscopy, dynamic light scattering (DLS), ζ-potential, liquid nitrogen (LN2) porosimetry, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results highlighted that both adsorbents have extraordinary sorption capacities. Xerogels are cost-effective since they approximate the performance of nanoparticles with much less organic content. Both adsorbents could be used in the form of dispersions. The xerogels, though, are more practicable materials since they may penetrate the pores of a metal or ceramic solid substrate in the form of a precursor gel-forming solution, producing composite purification devices.
Collapse
Affiliation(s)
- Michael Arkas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Konstantinos Giannakopoulos
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Evangelos P Favvas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Sergios Papageorgiou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - George V Theodorakopoulos
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Artemis Giannoulatou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | | | | | | | - Efthalia Georgiou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
5
|
Arkas M, Vardavoulias M, Kythreoti G, Giannakoudakis DA. Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics 2023; 15:524. [PMID: 36839847 PMCID: PMC9966633 DOI: 10.3390/pharmaceutics15020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The capability of radially polymerized bio-dendrimers and hyperbranched polymers for medical applications is well established. Perhaps the most important implementations are those that involve interactions with the regenerative mechanisms of cells. In general, they are non-toxic or exhibit very low toxicity. Thus, they allow unhindered and, in many cases, faster cell proliferation, a property that renders them ideal materials for tissue engineering scaffolds. Their resemblance to proteins permits the synthesis of derivatives that mimic collagen and elastin or are capable of biomimetic hydroxy apatite production. Due to their distinctive architecture (core, internal branches, terminal groups), dendritic polymers may play many roles. The internal cavities may host cell differentiation genes and antimicrobial protection drugs. Suitable terminal groups may modify the surface chemistry of cells and modulate the external membrane charge promoting cell adhesion and tissue assembly. They may also induce polymer cross-linking for healing implementation in the eyes, skin, and internal organ wounds. The review highlights all the different categories of hard and soft tissues that may be remediated with their contribution. The reader will also be exposed to the incorporation of methods for establishment of biomaterials, functionalization strategies, and the synthetic paths for organizing assemblies from biocompatible building blocks and natural metabolites.
Collapse
Affiliation(s)
- Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | | - Georgia Kythreoti
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | |
Collapse
|
6
|
Lamellar Tetragonal Symmetry of Amphiphilic Thermotropic Ionic Liquid Crystals in the Framework of Other Closely Related Highly Ordered Structures. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
An overview of the chemical compounds forming the rare smectic T phases is presented with references to the historical context. Thermodynamics (transition temperatures, enthalpies) along with the factors (stereochemical constraints, electrostatic interactions, aliphatic chain stacking, intermolecular forces) contributing to the adoption of tetragonal scaffolds are also discussed. Characteristic optical microscopy textures and X-ray diffraction patterns are presented. In parallel, a comparison of the geometrical parameters such as distances between atoms, molecular areas, volumes, and lattice parameters with the closest two-dimensional and three-dimensional organizations, is performed.
Collapse
|
7
|
Arkas M, Anastopoulos I, Giannakoudakis DA, Pashalidis I, Katsika T, Nikoli E, Panagiotopoulos R, Fotopoulou A, Vardavoulias M, Douloudi M. Catalytic Neutralization of Water Pollutants Mediated by Dendritic Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:445. [PMID: 35159790 PMCID: PMC8838811 DOI: 10.3390/nano12030445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Radially polymerized dendritic compounds are nowadays an established polymer category next to their linear, branched, and cross-linked counterparts. Their uncommon tree-like architecture is characterized by adjustable internal cavities and external groups. They are therefore exceptional absorbents and this attainment of high concentrations in their interior renders them ideal reaction media. In this framework, they are applied in many environmentally benign implementations. One of the most important among them is water purification through pollutant decomposition. Simple and composite catalysts and photo-catalysts containing dendritic polymers and applied in water remediation will be discussed jointly with some unconventional solutions and prospects.
Collapse
Affiliation(s)
- Michael Arkas
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47040 Arta, Greece;
| | | | - Ioannis Pashalidis
- Environmental & Radioanalytical Chemistry Lab, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus;
| | - Theodora Katsika
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| | - Eleni Nikoli
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| | - Rafael Panagiotopoulos
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| | - Anna Fotopoulou
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| | | | - Marilina Douloudi
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| |
Collapse
|
8
|
Zhang X, Lin J, Wang L, Zhang L, Lin J, Gao L. Supramolecular assembly of diblock copolymer blends with hydrogen-bonding interactions modeled by Yukawa potentials. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.09.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
On the supramacromolecular structure of core–shell amphiphilic macromolecules derived from hyperbranched polyethyleneimine. J Colloid Interface Sci 2014; 436:243-50. [DOI: 10.1016/j.jcis.2014.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 11/22/2022]
|
10
|
Weber ACJ, Chen DHJ. Conformational problem of alkanes in liquid crystals by NMR spectroscopy: a mini-review. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:560-569. [PMID: 25142124 DOI: 10.1002/mrc.4124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
Recent discoveries of the role of alkane flexibility in determining liquid-crystal behaviour are surveyed. With the impetus for understanding the alkane conformational problem established, recent model dependent (1)H NMR work on the topic will be reviewed where progress is made but the need to circumvent models eventually becomes evident. A closer look at the rigid basic units of alkanes will provide the way forward where it is shown that the orientational ordering and anisotropic potentials of these molecules dissolved in liquid crystals scale with each other. Once this relationship is established, a series of works using anisotropic and isotropic (1)H NMR spectroscopy to study alkane conformational statistics will be covered, wherein the influence of the gas, isotropic condensed and anisotropic condensed phases will be described.
Collapse
Affiliation(s)
- Adrian C J Weber
- Chemistry Department, Brandon University, 270-18th St, Brandon, MB, R7A 6A9, Canada
| | | |
Collapse
|
11
|
Dendritic effects on photophysical and fluorescence properties of coumarin functionalized dendrigraft polybutadiene. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.01.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Molecular simulation study of PAMAM dendrimer composite membranes. J Mol Model 2014; 20:2119. [DOI: 10.1007/s00894-014-2119-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/14/2013] [Indexed: 01/20/2023]
|