1
|
Barranco-García R, García-Peñas A, Blázquez-Blázquez E, Ressia JA, Quinzani LM, Vallés EM, Gómez-Elvira JM, Pérez E, Cerrada ML. Polypropylene Nanocomposites Attained by In Situ Polymerization Using SBA-15 Particles as Support for Metallocene Catalysts: Effect of Molecular Weight and Tacticity on Crystalline Details, Phase Transitions and Rheological Behavior. Molecules 2023; 28:molecules28114261. [PMID: 37298738 DOI: 10.3390/molecules28114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, nanocomposites based on polypropylene are synthesized by the in situ polymerization of propene in the presence of mesoporous SBA-15 silica, which acts as a carrier of the catalytic system (zirconocene as catalyst and methylaluminoxane as cocatalyst). The protocol for the immobilization and attainment of hybrid SBA-15 particles involves a pre-stage of contact between the catalyst with cocatalyst before their final functionalization. Two zirconocene catalysts are tested in order to attain materials with different microstructural characteristics, molar masses and regioregularities of chains. Some polypropylene chains are able to be accommodated within the silica mesostructure of these composites. Thus, an endothermic event of small intensity appears during heating calorimetric experiments at approximately 105 °C. The existence of these polypropylene crystals, confined within the nanometric channels of silica, is corroborated by SAXS measurements obtained via the change in the intensity and position of the first-order diffraction of SBA-15. The incorporation of silica also has a very significant effect on the rheological response of the resultant materials, leading to important variations in various magnitudes, such as the shear storage modulus, viscosity and δ angle, when a comparison is established with the corresponding neat iPP matrices. Rheological percolation is reached, thus demonstrating the role of SBA-15 particles as filler, in addition to the supporting role that they exert during the polymerizations.
Collapse
Affiliation(s)
- Rosa Barranco-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IAAB, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés, Spain
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jorge A Ressia
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km. 7, Bahía Blanca 8000, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata 1900, Argentina
| | - Lidia M Quinzani
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km. 7, Bahía Blanca 8000, Argentina
| | - Enrique M Vallés
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km. 7, Bahía Blanca 8000, Argentina
| | - José M Gómez-Elvira
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ernesto Pérez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María L Cerrada
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
2
|
Díez-Rodríguez TM, Blázquez-Blázquez E, Fernández-García M, Muñoz-Bonilla A, Pérez E, Cerrada ML. Antimicrobial Activity and Crystallization Features in Bio-Based Composites of PLLA and MCM-41 Particles Either Pristine or Functionalized with Confined Ag Nanowires. Polymers (Basel) 2023; 15:polym15092084. [PMID: 37177226 PMCID: PMC10180868 DOI: 10.3390/polym15092084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Composites based on an L-rich poly(lactic acid) (PLLA) and MCM-41, either neat or modified with a silver (MCM-41@Ag), are achieved by solvent casting, being next processed by compression molding. Ag is mainly embedded as nanowires within the hybrid MCM-41@Ag particles, enabling its antimicrobial character. In these composites, the PLLA thermal stability, nucleation efficiency, and mechanical response are dependent on the MCM-41 nature and, to a lesser extent, on its content. Thus, differences in transitions of the PLLA matrix are noticed during cooling at 10 °C/min and in the subsequent heating when composites with neat or modified MCM-41 are compared. A very remarkable nucleation effect is played by pristine MCM-41, being inferior when MCM-41@Ag is incorporated into the PLLA. Wide angle X-ray scattering (WAXS) measurements using synchrotron radiation and performed under variable-temperature conditions in the composites containing MCM-41@Ag indicate that during cold crystallization, the disordered α' polymorph is initially formed, but it rapidly transforms into ordered α crystals. A long spacing peak, clearly seen in pure PLLA, appears as a small shoulder in PLLAMCM@Ag4 and is undetectable in PLLAMCM@Ag9 and PLLAMCM@Ag20. Furthermore, an increase in MH with the silica content is found in the two sets of composites, the higher MH values being observed in the family of PLLA and MCM-41@Ag. Finally, remarkable antimicrobial features are noticeable in the composites with MCM-41@Ag since this modified silica transfers its biocidal characteristics into the PLLA composites.
Collapse
Affiliation(s)
- Tamara M Díez-Rodríguez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ernesto Pérez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María L Cerrada
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
3
|
Yang T, Ye C, Cuo N, Meng D, Li J. Effect of testing condition and crystalline properties on the mechanical α-relaxation of polyethylene. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
4
|
Cecílio DM, Cerrada M, Pérez E, Fernandes A, Paulo Lourenço J, McKenna TF, Rosário Ribeiro M. A novel approach for preparation of nanocomposites with an excellent rigidity/deformability balance based on reinforced HDPE with halloysite. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Díez-Rodríguez TM, Blázquez-Blázquez E, Pérez E, Cerrada ML. Influence of Content in D Isomer and Incorporation of SBA-15 Silica on the Crystallization Ability and Mechanical Properties in PLLA Based Materials. Polymers (Basel) 2022; 14:polym14061237. [PMID: 35335567 PMCID: PMC8949796 DOI: 10.3390/polym14061237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Two L-rich polylactides (PLLA) with distinct contents in D isomer and their composites with an intermediate amount of mesoporous Santa Barbara Amorphous-15 (SBA-15) (about 9 wt.%) particles were attained by melt extrusion for the evaluation of the effect of content in D isomer and incorporation of mesoporous silica on the structural PLLA features and on their ultimate mechanical performance. For that, samples have been crystallized under dynamic and isothermal tests (from the melt and from the glassy states). The results from DSC and X-ray diffraction show obtainment of the pure α’ and α modifications at different intervals of crystallization temperature depending on the D steroisomer amount of the PLLA used. Furthermore, several phase transitions are observed depending on the crystallinity reached and the polymorphs developed during the isothermal crystallization from the glass: an additional cold crystallization, the α’/α transformation and the subsequent melting process, appearing all of them at temperatures clearly dependent on the D content. Rigidity, measured through microhardness in amorphous samples, is also affected by the D isomer and the presence of SBA-15 particles. Reinforcement effect of mesoporous silica is relatively more important in the matrix with the highest D content.
Collapse
|
6
|
Díez-Rodríguez TM, Blázquez-Blázquez E, Antunes NLC, Ribeiro MR, Pérez E, Cerrada ML. Nanocomposites of PCL and SBA-15 Particles Prepared by Extrusion: Structural Characteristics, Confinement of PCL Chains within SBA-15 Nanometric Channels and Mechanical Behavior. Polymers (Basel) 2021; 14:129. [PMID: 35012150 PMCID: PMC8747316 DOI: 10.3390/polym14010129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
A study of different nanocomposites based on poly(ε-caprolactone) (PCL) and mesoporous SBA-15 silica that were prepared by melt extrusion was carried out by analyzing the possible effect of this filler on the crystalline details of PCL, on its mechanical behavior, and on the eventual observation of the confinement of the polymeric chains within the hollow nanometric silica channels. Thus, simultaneous Small-Angle and Wide-Angle X-ray Scattering (SAXS/WAXS) synchrotron experiments at variable temperature were performed on these PCL nanocomposites with different mesoporous silica contents. The importance of the morphological and structural features was assessed by the changes that were observed during the mechanical response of the final materials, which determined that the presence of mesoporous particles leads to a noticeable reinforcing effect.
Collapse
Affiliation(s)
- Tamara M Díez-Rodríguez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Nadine L C Antunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M Rosário Ribeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Ernesto Pérez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María L Cerrada
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
7
|
Cecílio DM, Fernandes A, Lourenço JP, McKenna TFL, Ribeiro MR. Innovative route for the preparation of high-performance polyolefin materials based on unique dendrimeric silica particles. Polym Chem 2021. [DOI: 10.1039/d1py00453k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An innovative methodology for the preparation of high-performance polyolefin-based materials combining a unique dendrimeric silica carrier, a straightforward in situ supporting procedure and in situ ethylene polymerization technique was developed.
Collapse
Affiliation(s)
- Duarte M. Cecílio
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Auguste Fernandes
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - João Paulo Lourenço
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | | | - M. Rosário Ribeiro
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| |
Collapse
|
8
|
Díez-Rodríguez TM, Blázquez-Blázquez E, Pérez E, Cerrada ML. Composites Based on Poly(Lactic Acid) (PLA) and SBA-15: Effect of Mesoporous Silica on Thermal Stability and on Isothermal Crystallization from Either Glass or Molten State. Polymers (Basel) 2020; 12:polym12112743. [PMID: 33227923 PMCID: PMC7699165 DOI: 10.3390/polym12112743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
Several composites based on an L-rich poly(lactic acid) (PLA) with different contents of mesoporous Santa Barbara Amorphous (SBA-15) silica were prepared in order to evaluate the effect of the mesoporous silica on the resultant PLA materials by examining morphological aspects, changes in PLA phases and their transitions, and, primarily, the influence on some final properties. Melt extrusion was chosen for the obtainment of the composites, followed by quenching from the melt to prepare films. Completely amorphous samples were then attained, as deduced from X-ray diffraction and differential scanning calorimetry (DSC) analyses. Thermogravimetric analysis (TGA) results demonstrated that the presence of SBA-15 particles in the PLA matrix did not exert any significant influence on the thermal decomposition of these composites. An important nucleation effect of the silica was found in PLA, especially under isothermal crystallization either from the melt or from its glassy state. As expected, isothermal crystallization from the glass was considerably faster than from the molten state, and these high differences were also responsible for a more considerable nucleating role of SBA-15 when crystallizing from the melt. It is remarkable that the PLA under analysis showed very close temperatures for cold crystallization and its subsequent melting. Moreover, the type of developed polymorphs did not accomplish the common rules previously described in the literature. Thus, all the isothermal experiments led to exclusive formation of the α modification, and the observation of the α’ crystals required the annealing for long times at temperatures below 80 °C, as ascertained by both DSC and X-ray diffraction experiments. Finally, microhardness (MH) measurements indicated a competition between the PLA physical aging and the silica reinforcement effect in the as-processed amorphous films. Physical aging in the neat PLA was much more important than in the PLA matrix that constituted the composites. Accordingly, the MH trend with SBA-15 content was strongly dependent on aging times.
Collapse
|
9
|
Barranco-García R, Gómez-Elvira JM, Ressia JA, Quinzani L, Vallés EM, Pérez E, Cerrada ML. Variation of Ultimate Properties in Extruded iPP-Mesoporous Silica Nanocomposites by Effect of iPP Confinement within the Mesostructures. Polymers (Basel) 2020; 12:E70. [PMID: 31906517 PMCID: PMC7023671 DOI: 10.3390/polym12010070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
Abstract
Nanocomposites based on isotactic polypropylene (iPP) and mesoporous silica particles of either MCM-41 or SBA-15 were prepared by melt extrusion. The effect of the silica incorporated into an iPP matrix was firstly detected in the degradation behavior and in the rheological response of the resultant composites. Both were ascribed, in principle, to variations in the inclusion of iPP chains within these two mesostructures, with well different pore size. DSC experiments did not provide information on the existence of confinement in the iPP-MCM-41 materials, whereas a small endotherm, located at about 100 °C and attributed to the melting of confined crystallites, is clearly observed in the iPP-SBA-15 composites. Real-time variable-temperature Small Angle X-ray Scattering (SAXS) experiments with synchrotron radiation turned out to be crucial to finding the presence of iPP within MCM-41 pores. From these measurements, precise information was also deduced on the influence of the MCM-41 on iPP long spacing since overlapping does not occur between most probable iPP long spacing peak with the characteristic diffractions from the MCM-41 hexagonal nanostructure in comparison with existing superposition in SBA-15-based materials.
Collapse
Affiliation(s)
- Rosa Barranco-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-G.); (J.M.G.-E.); (E.P.)
| | - José M. Gómez-Elvira
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-G.); (J.M.G.-E.); (E.P.)
| | - Jorge A. Ressia
- PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, Bahía Blanca 8000, Argentina; (J.A.R.); (L.Q.); (E.M.V.)
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata 1900, Argentina
| | - Lidia Quinzani
- PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, Bahía Blanca 8000, Argentina; (J.A.R.); (L.Q.); (E.M.V.)
| | - Enrique M. Vallés
- PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, Bahía Blanca 8000, Argentina; (J.A.R.); (L.Q.); (E.M.V.)
| | - Ernesto Pérez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-G.); (J.M.G.-E.); (E.P.)
| | - María L. Cerrada
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-G.); (J.M.G.-E.); (E.P.)
| |
Collapse
|
10
|
Barranco-García R, López-Majada JM, Lorenzo V, Gómez-Elvira JM, Pérez E, Cerrada ML. Confinement of iPP chains in the interior of SBA-15 mesostructure ascertained by gas transport properties in iPP-SBA-15 nanocomposites prepared by extrusion. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Barranco-García R, Ferreira AE, Ribeiro MR, Lorenzo V, García-Peñas A, Gómez-Elvira JM, Pérez E, Cerrada ML. Hybrid materials obtained by in situ polymerization based on polypropylene and mesoporous SBA-15 silica particles: Catalytic aspects, crystalline details and mechanical behavior. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Hafnocene catalyst for polyethylene and its nanocomposites with SBA-15 by in situ polymerization: Immobilization approaches, catalytic behavior and properties evaluation. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
de la Orden M, Montes J, Martínez Urreaga J, Bento A, Ribeiro M, Pérez E, Cerrada M. Thermo and photo-oxidation of functionalized metallocene high density polyethylene: Effect of hydrophilic groups. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2014.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|